Analytical method for the representation of atoms‐in‐molecules densities

We present analytic refinements and applications of the deformed atomic densities method [Fernández Rico, J.; López, R.; Ramírez, G. J Chem Phys 1999, 110, 4213–4220]. In this method the molecular electron density is partitioned into atomic contributions, using a minimal deformation criterion for every two‐center distributions, and the atomic contributions are expanded in spherical harmonics times radial factors. Recurrence relations are introduced for the partition of the two‐center distributions, and the final radial factors are expressed in terms of exponential functions multiplied by polynomials. Algorithms for the practical implementation are developed and tested, showing excellent performances. The usefulness of the present approach is illustrated by examining its ability to describe the deformation of atoms in different molecular environments and the relationship between these atomic densities and some chemical properties of molecules. © 2004 Wiley Periodicals, Inc. J Comput Chem 25: 1355–1363, 2004

[1]  P. Politzer,et al.  Properties of atoms in molecules. a proposed method for calculating the extent of distortion of an atom , 1973 .

[2]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[3]  A. C. Hurley On the Method of Atoms in Molecules III: The Ground State of Hydrogen Fluoride , 1956 .

[4]  F. L. Hirshfeld Bonded-atom fragments for describing molecular charge densities , 1977 .

[5]  Herbert H. H. Homeier,et al.  Programs for the evaluation of overlap integrals with B functions , 1992 .

[6]  R. Stewart V. One‐Electron Density Functions and Many‐Centered Finite Multipole Expansions , 1977 .

[7]  A. Aguado,et al.  New program for molecular calculations with Slater‐type orbitals , 2001 .

[8]  Eduardo V. Ludeña,et al.  The loge theory as a starting point for variational calculations. I. General formalism , 1974 .

[9]  Herbert H. H. Homeier,et al.  On the Evaluation of Overlap Integrals with Exponential-type Basis Functions , 1992 .

[10]  Peter Politzer,et al.  Properties of atoms in molecules. I. Proposed definition of the charge on an atom in a molecule , 1970 .

[11]  Herbert H. H. Homeier,et al.  Improved quadrature methods for three‐center nuclear attraction integrals with exponential‐type basis functions , 1991 .

[12]  Ramon Carbó-Dorca,et al.  Toward a global maximization of the molecular similarity function: Superposition of two molecules , 1997 .

[13]  R. López,et al.  Analysis of the molecular density: STO densities , 2002 .

[14]  R. Parr Atoms in molecules: Reply to Bader’s Comment , 1986 .

[15]  R. López,et al.  Density and binding forces in diatomics , 2002 .

[16]  Emili Besalú,et al.  A general survey of molecular quantum similarity , 1998 .

[17]  Peter Politzer,et al.  Properties of atoms in molecules: III. Atomic charges and centers of electronic charge in some heteronuclear diatomic molecules , 1971 .

[18]  Rafael López,et al.  Polarized basis sets of Slater‐type orbitals: H to Ne atoms , 2003, J. Comput. Chem..

[19]  R. López,et al.  Density and binding forces: Rotational barrier of ethane , 2003 .

[20]  R. Parr,et al.  Regional stationary principles and regional virial theorems , 1973 .

[21]  R. Constanciel,et al.  Aspects of the Localizability of Electrons in Atoms and Molecules: Loge Theory and Related Methods , 1972 .

[22]  R. Bader,et al.  Quantum Theory of Atoms in Molecules–Dalton Revisited , 1981 .

[23]  Paul L. A. Popelier,et al.  Convergence of the multipole expansion for electrostatic potentials of finite topological atoms , 2000 .

[24]  Peter Politzer,et al.  Properties of atoms in molecules. The position of the center of electronic charge of an atom in a molecule , 1971 .

[25]  Á. M. Pendás,et al.  Ions in crystals: The topology of the electron density in ionic materials. I. Fundamentals , 1997 .

[26]  Lemin Li,et al.  The atom in a molecule: A density matrix approach , 1986 .

[27]  R. López,et al.  Analysis of the molecular density , 1999 .

[28]  G. G. Hall,et al.  Approximate Electron Densities for Atoms and Molecules , 1980 .

[29]  A. C. Hurley On the Method of Atoms in Molecules , 1955 .

[30]  A. C. Hurley On the Method of Atoms in Molecules II: An Intra-Atomic Correlation Correction , 1956 .

[31]  Robert G. Parr,et al.  The atom in a molecule: A wave function approach , 1986 .

[32]  R. Bader,et al.  Quantum topology of molecular charge distributions. II. Molecular structure and its change , 1979 .

[33]  P. Politzer,et al.  Separation of core and valence regions in atoms , 1976 .

[34]  Herbert H. H. Homeier,et al.  Improved quadrature methods for the Fourier transform of a two-center product of exponential-type basis functions , 1992 .

[35]  R. Feynman Forces in Molecules , 1939 .

[36]  L. Milne‐Thomson A Treatise on the Theory of Bessel Functions , 1945, Nature.