The Magnetohydrodynamic (MHD) Effects on the Performance of a Hydrostatic Thrust Bearing With Hybrid Raleigh Step
暂无分享,去创建一个
This paper studies the numerical development of flow patterns and pressure profiles inside a hybrid Rayleigh step thrust bearing (HRSB) where the working magnetohydrodynamic (MHD) fluid is subject to an imposed magnetic field. This hybrid type bearing stems from integrating two classical component: the modified Rayleigh step (variable depth) and the hydrostatic feed entering at the center of the circular thrust bearing. The parameters used in this study consist of one geometric parameter, the Rayleigh step aspect ratio (depth to length ratio) and two dimensionless operational parameters, (i) the Reynolds number based on the hydrostatic fluid jet velocity entering the restrictor (Rejet ) and the Reynolds number based on the smooth upper plate angular speed (Replate ). The numerical results are obtained using the commercially available package ANSYS (CFX) [4], which utilizes the full three-dimensional Navier-Stokes equations for the steady-state incompressible MHD fluid with constant properties. Results to be presented will will contain both vector and pressure fields within the Rayleigh step profile and on the smooth lands.Copyright © 2010 by ASME