Enhancement of filling performance of a copper plating formula at low chloride concentration

[1]  M. Yokoi,et al.  Adsorption behavior of polyoxyethyleneglycole on the copper surface in an acid copper sulfate bath , 1984 .

[2]  J. Reid,et al.  Effects of polyethylene glycol on the electrochemical characteristics of copper cathodes in an acid copper medium , 1987 .

[3]  Alan C. West,et al.  Copper Deposition in the Presence of Polyethylene Glycol I. Quartz Crystal Microbalance Study , 1998 .

[4]  Panayotis C. Andricacos,et al.  Damascene copper electroplating for chip interconnections , 1998, IBM J. Res. Dev..

[5]  A. West,et al.  LEVELING OF 200 NM FEATURES BY ORGANIC ADDITIVES , 1999 .

[6]  Alan C. West,et al.  Electrochemical and Fill Studies of a Multicomponent Additive Package for Copper Deposition , 2001 .

[7]  W. H. Li,et al.  Electrochemical deposition of Copper on patterned Cu/Ta(N)/SiO2 surfaces for super filling of sub-micron features , 2001 .

[8]  V. Jović,et al.  Copper electrodeposition from a copper acid baths in the presence of PEG and NaCl , 2001 .

[9]  Hideo Honma,et al.  Via-filling using electroplating for build-up PCBs , 2001 .

[10]  J. Shieh,et al.  Wetting effect on gap filling submicron damascene by an electrolyte free of levelers , 2002 .

[11]  M. Hayase,et al.  Copper Bottom-up Deposition by Breakdown of PEG-Cl Inhibition , 2002 .

[12]  K. Takagi,et al.  Development of sequential build-up multilayer printed wiring boards in Japan , 2003 .

[13]  C. Wan,et al.  Void-free anisotropic deposition for IC interconnect with polyethylene glycol as the single additive based on uneven adsorption distribution , 2003 .

[14]  Andrew A. Gewirth,et al.  Inhibition due to the interaction of polyethylene glycol, chloride, and copper in plating baths: A surface-enhanced Raman study , 2003 .

[15]  Wei-Ping Dow,et al.  Interactions Between Brightener and Chloride Ions on Copper Electroplating for Laser-Drilled Via-Hole Filling , 2003 .

[16]  K. Kondo,et al.  Copper damascene electrodeposition and additives , 2003 .

[17]  S. Oh,et al.  High-Aspect-Ratio Copper Via Filling Used for Three-Dimensional Chip Stacking , 2003 .

[18]  H. Honma,et al.  Advanced copper electroplating for application of electronics , 2003 .

[19]  R.R. Tummala,et al.  Next-generation microvia and global wiring technologies for SOP , 2004, IEEE Transactions on Advanced Packaging.

[20]  K. Kondo,et al.  Role of Additives for Copper Damascene Electrodeposition Experimental Study on Inhibition and Acceleration Effects , 2004 .

[21]  K. Kondo,et al.  High-Aspect-Ratio Copper-Via-Filling for Three-Dimensional Chip Stacking II. Reduced Electrodeposition Process Time , 2005 .

[22]  Daniel Wheeler,et al.  Superconformal film growth: Mechanism and quantification , 2005, IBM J. Res. Dev..

[23]  T. Osaka,et al.  Effects of Additives on Copper Electrodeposition in Submicrometer Trenches , 2005 .

[24]  W. Dow,et al.  Roles of Chloride Ion in Microvia Filling by Copper Electrodeposition I. Studies Using SEM and Optical Microscope , 2005 .

[25]  Wei-Ping Dow,et al.  Roles of chloride ion in microvia filling by copper electrodeposition -II. Studies using EPR and galvanostatic measurements , 2005 .

[26]  K. Hebert Role of Chloride Ions in Suppression of Copper Electrodeposition by Polyethylene Glycol , 2005 .

[27]  Panayotis C. Andricacos,et al.  The chemistry of additives in damascene copper plating , 2005, IBM J. Res. Dev..

[28]  W. Dow,et al.  Microvia Filling over Self-Assembly Disulfide Molecule on Au and Cu Seed Layers , 2005 .

[29]  Wei-Ping Dow,et al.  Influence of convection-dependent adsorption of additives on microvia filling by copper electroplating , 2005 .

[30]  Wei-Ping Dow,et al.  Evaluating the Filling Performance of a Copper Plating Formula Using a Simple Galvanostat Method , 2006 .

[31]  Cheng-Wei Chou,et al.  Practical monitoring of filling performance in a copper plating bath , 2006 .

[32]  P. Searson,et al.  Electrochemical Characterization of Adsorption-Desorption of the Cuprous-Suppressor-Chloride Complex during Electrodeposition of Copper , 2006 .

[33]  C. Mele,et al.  An electrochemical and in situ SERS study of Cu electrodeposition from acidic sulphate solutions in the presence of 3-diethylamino-7-(4-dimethylaminophenylazo)-5-phenylphenazinium chloride (Janus Green B) , 2006 .

[34]  Thomas P. Moffat,et al.  Cationic Surfactants for the Control of Overfill Bumps in Cu Superfilling , 2006 .

[35]  Thomas P. Moffat,et al.  Electrodeposition of Cu in the PEI-PEG-Cl-SPS Additive System Reduction of Overfill Bump Formation During Superfilling , 2006 .

[36]  C. Mele,et al.  A novel polymeric leveller for the electrodeposition of copper from acidic sulphate bath: A spectroelectrochemical investigation , 2007 .

[37]  W. Dow,et al.  Simultaneous Filling of Microvia and Through Hole by Copper Electroplating for High Density Interconnection of PCB , 2007 .

[38]  Mark J. Willey,et al.  Adsorption Kinetics of Polyvinylpyrrolidone during Copper Electrodeposition , 2007 .

[39]  J. Harb,et al.  The Role of SPS, MPSA, and Chloride in Additive Systems for Copper Electrodeposition , 2007 .