Cooling Codes: Thermal-Management Coding for High-Performance Interconnects

High temperatures have dramatic negative effects on interconnect performance and, hence, numerous techniques have been proposed to reduce the power consumption of on-chip buses. However, existing methods fall short of fully addressing the thermal challenges posed by high-performance interconnects. In this paper, we introduce new efficient coding schemes that make it possible to directly control the <italic>peak temperature</italic> of a bus by effectively cooling its hottest wires. This is achieved by avoiding state transitions on the hottest wires for as long as necessary until their temperature drops off. We also reduce the <italic>average power consumption</italic> by making sure that the total number of state transitions on all the wires is below a prescribed threshold. We show how each of these two features can be coded for separately or, alternatively, how both can be achieved at the same time. In addition, <italic>error-correction</italic> for the transmitted information can be provided while controlling the peak temperature and/or the average power consumption. In general, our cooling codes use <inline-formula> <tex-math notation="LaTeX">$n > k$ </tex-math></inline-formula> wires to encode a given <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-bit bus. One of our goals herein is to determine the minimum possible number of wires <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> needed to encode <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula> bits while satisfying any combination of the three desired properties. We provide full theoretical analysis in each case. In particular, we show that <inline-formula> <tex-math notation="LaTeX">$n = k+t+1$ </tex-math></inline-formula> suffices to cool the <inline-formula> <tex-math notation="LaTeX">$t$ </tex-math></inline-formula> hottest wires, and this is the best possibility. Moreover, although the proposed coding schemes make use of sophisticated tools from combinatorics, discrete geometry, linear algebra, and coding theory, the resulting encoders and decoders are fully practical. They do not require significant computational overhead and can be implemented without sacrificing a large circuit area.

[1]  Wayne P. Burleson,et al.  Collaborative sensing of on-chip wire temperatures using interconnect based ring oscillators , 2008, GLSVLSI '08.

[2]  Sarit Buzaglo,et al.  Bounds on the Size of Permutation Codes With the Kendall $\tau $ -Metric , 2014, IEEE Transactions on Information Theory.

[3]  Massoud Pedram,et al.  High-level Power Modeling, Estimation, And Optimization , 1997, Proceedings of the 34th Design Automation Conference.

[4]  Rudolf Ahlswede,et al.  On Perfect Codes and Related Concepts , 2001, Des. Codes Cryptogr..

[5]  Victor K.-W. Wei,et al.  Generalized Hamming weights for linear codes , 1991, IEEE Trans. Inf. Theory.

[6]  Alexander Vardy,et al.  Error-correcting codes in projective space , 2008, 2008 IEEE International Symposium on Information Theory.

[7]  Amos Lapidoth,et al.  Channels That Heat Up , 2008, IEEE Transactions on Information Theory.

[8]  Kaustav Banerjee,et al.  Compact modeling and SPICE-based simulation for electrothermal analysis of multilevel ULSI interconnects , 2001, IEEE/ACM International Conference on Computer Aided Design. ICCAD 2001. IEEE/ACM Digest of Technical Papers (Cat. No.01CH37281).

[9]  N. J. A. Sloane,et al.  A new table of constant weight codes , 1990, IEEE Trans. Inf. Theory.

[10]  Xinmiao Zhang VLSI Architectures for Modern Error-Correcting Codes , 2015 .

[11]  Luca Benini,et al.  Asymptotic zero-transition activity encoding for address busses in low-power microprocessor-based systems , 1997, Proceedings Great Lakes Symposium on VLSI.

[12]  Enrico Macii,et al.  Thermal-Aware Design Techniques for Nanometer CMOS Circuits , 2008, J. Low Power Electron..

[13]  Tenkasi V. Ramabadran,et al.  A coding scheme for m-out-of-n codes , 1990, IEEE Trans. Commun..

[14]  Masahiro Fujita,et al.  Irredundant address bus encoding techniques based on adaptive codebooks for low power , 2003, ASP-DAC '03.

[15]  Sascha Kurz Upper bounds for partial spreads , 2017 .

[16]  Anantha P. Chandrakasan,et al.  Bus Energy Reduction by Transition Pattern Coding Using a Detailed Deep Submicrometer Bus Model , 2003 .

[17]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[18]  Peter Petrov,et al.  Low-power instruction bus encoding for embedded processors , 2004, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[19]  Richard M. Wilson,et al.  A course in combinatorics , 1992 .

[20]  Alan Hartman,et al.  The existence of resolvable Steiner quadruple systems , 1987, J. Comb. Theory, Ser. A.

[21]  A. Chandrakasan,et al.  Transition pattern coding: An approach to reduce energy in interconnect , 2000, Proceedings of the 26th European Solid-State Circuits Conference.

[22]  Nihar R. Mahapatra,et al.  Accurate energy dissipation and thermal modeling for nanometer-scale buses , 2005, 11th International Symposium on High-Performance Computer Architecture.

[23]  Tuvi Etzion,et al.  Product Constructions for Perfect Lee Codes , 2011, IEEE Transactions on Information Theory.

[24]  Alexander Vardy,et al.  Cooling codes: Thermal-management coding for high-performance interconnects , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[25]  Charles J. Colbourn,et al.  Quorum Systems Constructed from Combinatorial Designs , 2001, Inf. Comput..

[26]  Victor K.-W. Wei,et al.  On the generalized Hamming weights of several classes of cyclic codes , 1991, IEEE Trans. Inf. Theory.

[27]  E. Gilbert A comparison of signalling alphabets , 1952 .

[28]  W. C. Elmore The Transient Response of Damped Linear Networks with Particular Regard to Wideband Amplifiers , 1948 .

[29]  Kaustav Banerjee,et al.  Analysis of non-uniform temperature-dependent interconnect performance in high performance ICs , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).

[30]  Moshe Schwartz,et al.  Codes and Anticodes in the Grassman Graph , 2002, J. Comb. Theory, Ser. A.

[31]  Robert Winter,et al.  Dimensional crossover in Sr2RuO4 within a slave-boson mean-field theory , 2008, 0812.3731.

[32]  D. K. Ray-Chaudhuri,et al.  The Existence of Resolvable Block Designs , 1973 .

[33]  Anantha Chandrakasan,et al.  Reducing bus delay in submicron technology using coding , 2001, ASP-DAC '01.

[34]  Narayanan Vijaykrishnan,et al.  On-chip Bus Thermal Analysis and Optimization , 2006, Proceedings of the Design Automation & Test in Europe Conference.

[35]  Sascha Kurz Improved upper bounds for partial spreads , 2017, Des. Codes Cryptogr..

[36]  Charles J. Colbourn,et al.  Optimal Memoryless Encoding for Low Power Off-Chip Data Buses , 2006, 2006 IEEE/ACM International Conference on Computer Aided Design.

[37]  Anantha Chandrakasan,et al.  Energy reduction in VLSI computation modules: an information-theoretic approach , 2003, IEEE Trans. Inf. Theory.

[38]  D. Kleitman On a combinatorial conjecture of Erdös , 1966 .

[39]  L. Ji,et al.  Resolvable Steiner Quadruple Systems for the Last 23 Orders , 2005, SIAM J. Discret. Math..

[40]  Richard M. Wilson,et al.  On resolvable designs , 1972, Discret. Math..

[41]  Papa Sissokho,et al.  The maximum size of a partial spread in a finite projective space , 2016, J. Comb. Theory, Ser. A.

[42]  Naresh R. Shanbhag,et al.  Information-theoretic bounds on average signal transition activity [VLSI systems] , 1999, IEEE Trans. Very Large Scale Integr. Syst..

[43]  Enrico Macii,et al.  New Adaptive Encoding Schemes for Switching Activity Balancing in On-Chip Buses , 2007, PATMOS.

[44]  Marko Vukolic,et al.  Quorum Systems: With Applications to Storage and Consensus , 2012, Synthesis Lectures on Distributed Computing Theory.

[45]  Peter Keevash The existence of designs , 2014, 1401.3665.

[46]  Tuvi Etzion,et al.  Galois geometries and coding theory , 2016, Des. Codes Cryptogr..

[47]  Anantha Chandrakasan,et al.  A bus energy model for deep submicron technology , 2002, IEEE Trans. Very Large Scale Integr. Syst..

[48]  Deryk Osthus,et al.  The existence of designs via iterative absorption , 2016 .

[49]  Mircea R. Stan,et al.  Bus-invert coding for low-power I/O , 1995, IEEE Trans. Very Large Scale Integr. Syst..

[50]  Robert J. McEliece,et al.  New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities , 1977, IEEE Trans. Inf. Theory.

[51]  P. Erdös,et al.  INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS , 1961 .