Discovering important people and objects for egocentric video summarization

We developed an approach to summarize egocentric video. We introduced novel egocentric features to train a regressor that predicts important regions. Using the discovered important regions, our approach produces significantly more informative summaries than traditional methods that often include irrelevant or redundant information.

[1]  Wayne H. Wolf,et al.  Key frame selection by motion analysis , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[2]  Stephen W. Smoliar,et al.  An integrated system for content-based video retrieval and browsing , 1997, Pattern Recognit..

[3]  Pietro Perona,et al.  A Factorization Approach to Grouping , 1998, ECCV.

[4]  Alex Pentland,et al.  Unsupervised clustering of ambulatory audio and video , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[5]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[6]  John R. Kender,et al.  Video Summaries through Mosaic-Based Shot and Scene Clustering , 2002, ECCV.

[7]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[8]  James M. Rehg,et al.  Statistical Color Models with Application to Skin Detection , 2004, International Journal of Computer Vision.

[9]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[10]  David Salesin,et al.  Schematic storyboarding for video visualization and editing , 2006, SIGGRAPH 2006.

[11]  Yael Pritch,et al.  Making a Long Video Short: Dynamic Video Synopsis , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[12]  Christof Koch,et al.  Modeling attention to salient proto-objects , 2006, Neural Networks.

[13]  Yasuyuki Matsushita,et al.  Dynamic stills and clip trailers , 2006, The Visual Computer.

[14]  Yael Pritch,et al.  Webcam Synopsis: Peeking Around the World , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[15]  Nanning Zheng,et al.  Learning to Detect a Salient Object , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Denis Simakov,et al.  Summarizing visual data using bidirectional similarity , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Pietro Perona,et al.  Some Objects Are More Equal Than Others: Measuring and Predicting Importance , 2008, ECCV.

[18]  Bernt Schiele,et al.  Discovery of activity patterns using topic models , 2008 .

[19]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[20]  Xiaofeng Ren,et al.  Figure-ground segmentation improves handled object recognition in egocentric video , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[21]  Cristian Sminchisescu,et al.  Constrained parametric min-cuts for automatic object segmentation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[22]  Kristen Grauman,et al.  Accounting for the Relative Importance of Objects in Image Retrieval , 2010, BMVC.

[23]  Nebojsa Jojic,et al.  Structural epitome: a way to summarize one's visual experience , 2010, NIPS.

[24]  Gang Hua,et al.  A Hierarchical Visual Model for Video Object Summarization , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Derek Hoiem,et al.  Category Independent Object Proposals , 2010, ECCV.

[26]  Stefan Carlsson,et al.  Novelty detection from an ego-centric perspective , 2011, CVPR 2011.

[27]  Takahiro Okabe,et al.  Fast unsupervised ego-action learning for first-person sports videos , 2011, CVPR 2011.

[28]  Yong Jae Lee,et al.  Key-segments for video object segmentation , 2011, 2011 International Conference on Computer Vision.

[29]  Ali Farhadi,et al.  Understanding egocentric activities , 2011, 2011 International Conference on Computer Vision.

[30]  Steve Hodges,et al.  SenseCam: A wearable camera that stimulates and rehabilitates autobiographical memory , 2011, Memory.

[31]  Daniel T. Larose,et al.  Discovering Knowledge in Data: An Introduction to Data Mining , 2005 .