Lithium niobate guided-wave beam former for steering phased-array antennas.

We present the theoretical investigation, design, and simulation of a novel guided-wave optical processor for L-band-transmission beam forming in a linear array of phased active antennas. The proposed configuration includes two contradirectional surface acoustic-wave transducers, and it is based on a Y-cut, X-propagating Ti:LiNbO(3) planar waveguide supporting the lowest-order modes of both polarizations (TE(0) and TM(0)) at the free-space wavelength λ = 0.85 µm. A detailed comparison between the processor we propose and other optical and electronic architectures reported in the literature is carried out, exhibiting a number of significant advantages in terms of weight, total chip size, and power consumption, when the number of antenna elements is greater than 50.

[1]  M. Onoe,et al.  Determination of Elastic and Piezoelectric Constants for Crystals in Class (3m) , 1967 .

[2]  M. Nunoshita,et al.  Mode control of Ti-diffused LiNbO(3) slab optical waveguide. , 1977, Applied optics.

[3]  M. Minakata,et al.  Precise determination of refractive‐index changes in Ti‐diffused LiNbO3 optical waveguides , 1978 .

[4]  R.J. Mailloux,et al.  Phased array theory and technology , 1981, Proceedings of the IEEE.

[5]  M. N. Armenise,et al.  Optical rectangular waveguide in titanium-diffused lithium niobate having its optical axis in the transverse plane , 1982 .

[6]  Acoustic properties of proton‐exchanged LiNbO3 studied using the acoustic microscopy V(z) technique , 1986 .

[7]  D. J. Connolly,et al.  Advances in Gallium Arsenide Monolithic Microwave Integrated-Circuit Technology for Space Communications Systems , 1986 .

[8]  V. Hinkov Proton exchanged waveguides for surface acoustic waves on LiNbO3 , 1987 .

[9]  S. Fouchet,et al.  Wavelength dispersion of Ti induced refractive index change in LiNbO 3 as a function of diffusion parameters , 1987 .

[10]  M. G. Parent,et al.  Optical feed for a phased array microwave antenna , 1987 .

[11]  T. Gaylord,et al.  Rigorous three-dimensional coupled-wave diffraction analysis of single and cascaded anisotropic gratings , 1987 .

[12]  Willie W. Ng,et al.  Wideband fibre-optic delay network for phased array antenna steering , 1989 .

[13]  A comparison of optical damage in different types of LiNbO3 waveguides , 1989 .

[14]  G. J. Simonis,et al.  Optical generation, distribution, and control of microwaves using laser heterodyne , 1990 .

[15]  Simon Haykin,et al.  Optical processor for array antenna beam shaping and steering , 1991 .

[16]  Vittorio M. N. Passaro,et al.  Acoustic-mode analysis of a homogeneous multilayer guiding structure , 1991 .

[17]  D Psaltis,et al.  Acousto-optic signal processors for transmission and reception of phased-array antenna signals. , 1991, Applied optics.

[18]  Irwin L. Newberg,et al.  The first demonstration of an optically steered microwave phased array antenna using true-time-delay , 1991 .

[19]  H J Gerritsen,et al.  Application of Kogelnik's two-wave theory to deep, slanted, highly efficient, relief transmission gratings. , 1991, Applied optics.

[20]  K. Goossen,et al.  Monolithic optical fiber stub array. , 1992, Optics letters.

[21]  Alwyn J. Seeds,et al.  OPTICAL BEAMFORMING TECHNIQUES FOR PHASED-ARRAY ANTENNAS , 1992 .

[22]  C.S. Tsai,et al.  Integrated acoustooptic circuits and applications , 1992, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[23]  S. W. Bland,et al.  Monolithic Eight-Channel Photoreceiver Array OEICs for HDWDM Applications at 1.55 μm , 1992 .

[24]  N. Riza,et al.  An acoustooptic phased array antenna beamformer with independent phase and carrier control using single sideband signals , 1992, IEEE Photonics Technology Letters.

[25]  Ting K. Yee,et al.  Photonic in-phase/quadrature beam-forming network for phased array antenna applications , 1993 .