Retroviral mRNA nuclear export elements regulate protein function and virion assembly

[1]  A. Ephrussi,et al.  Splicing of oskar RNA in the nucleus is coupled to its cytoplasmic localization , 2004, Nature.

[2]  D. Gatfield,et al.  An eIF4AIII-containing complex required for mRNA localization and nonsense-mediated mRNA decay , 2004, Nature.

[3]  E. Freed,et al.  Cell-Type-Dependent Targeting of Human Immunodeficiency Virus Type 1 Assembly to the Plasma Membrane and the Multivesicular Body , 2004, Journal of Virology.

[4]  L. Maquat Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics , 2004, Nature Reviews Molecular Cell Biology.

[5]  H. Le Hir,et al.  Splicing enhances translation in mammalian cells: an additional function of the exon junction complex. , 2004, Genes & development.

[6]  M. Summers,et al.  Entropic switch regulates myristate exposure in the HIV-1 matrix protein. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[7]  M. Foti,et al.  HIV‐1 Egress is Gated Through Late Endosomal Membranes , 2003, Traffic.

[8]  E. Hunter,et al.  M‐PMV Capsid Transport Is Mediated by Env/Gag Interactions at the Pericentriolar Recycling Endosome , 2003, Traffic.

[9]  E. Hunter,et al.  The M‐PMV Cytoplasmic Targeting‐Retention Signal Directs Nascent Gag Polypeptides to a Pericentriolar Region of the Cell , 2003, Traffic.

[10]  D. Pérez-Caballero,et al.  Divergent retroviral late-budding domains recruit vacuolar protein sorting factors by using alternative adaptor proteins , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[11]  A. Calistri,et al.  AIP1/ALIX Is a Binding Partner for HIV-1 p6 and EIAV p9 Functioning in Virus Budding , 2003, Cell.

[12]  W. Sundquist,et al.  The Protein Network of HIV Budding , 2003, Cell.

[13]  J. Cunningham,et al.  Visualization of Retroviral Replication in Living Cells Reveals Budding into Multivesicular Bodies , 2003, Traffic.

[14]  S. Cohen,et al.  Tsg101 Control of Human Immunodeficiency Virus Type 1 Gag Trafficking and Release , 2003, Journal of Virology.

[15]  M. Marsh,et al.  Infectious HIV-1 assembles in late endosomes in primary macrophages , 2003, The Journal of cell biology.

[16]  B. Peterlin,et al.  Human p32 protein relieves a post-transcriptional block to HIV replication in murine cells , 2003, Nature Cell Biology.

[17]  Edouard Bertrand,et al.  Retroviral genomic RNAs are transported to the plasma membrane by endosomal vesicles. , 2003, Developmental cell.

[18]  E. Izaurralde,et al.  The interplay of nuclear mRNP assembly, mRNA surveillance and export. , 2003, Trends in cell biology.

[19]  E. Izaurralde,et al.  Genome‐wide analysis of nuclear mRNA export pathways in Drosophila , 2003, The EMBO journal.

[20]  M. Malim,et al.  Comprehensive Investigation of the Molecular Defect in vif-Deficient Human Immunodeficiency Virus Type 1 Virions , 2003, Journal of Virology.

[21]  Soon B. Hwang,et al.  Hepatitis C Virus RNA Replication Occurs on a Detergent-Resistant Membrane That Cofractionates with Caveolin-2 , 2003, Journal of Virology.

[22]  H. Hieronymus,et al.  Genome-wide analysis of RNA–protein interactions illustrates specificity of the mRNA export machinery , 2003, Nature Genetics.

[23]  S. Matsushita,et al.  Ability of small animal cells to support the postintegration phase of human immunodeficiency virus type-1 replication. , 2003, Virology.

[24]  M. Malim,et al.  Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein , 2002, Nature.

[25]  L. Bianchi,et al.  Expression of Hepatitis C Virus Proteins Induces Distinct Membrane Alterations Including a Candidate Viral Replication Complex , 2002, Journal of Virology.

[26]  J. Luban,et al.  Specific Incorporation of Heat Shock Protein 70 Family Members into Primate Lentiviral Virions , 2002, Journal of Virology.

[27]  G. Dreyfuss,et al.  Messenger-RNA-binding proteins and the messages they carry , 2002, Nature Reviews Molecular Cell Biology.

[28]  P. Silver,et al.  Protein and RNA export from the nucleus. , 2002, Developmental cell.

[29]  S. Kuersten,et al.  Identity elements used in export of mRNAs. , 2002, Molecular cell.

[30]  Malgorzata Kloc,et al.  Mechanisms of Subcellular mRNA Localization , 2002, Cell.

[31]  Ed Hurt,et al.  A Conserved mRNA Export Machinery Coupled to pre-mRNA Splicing , 2002, Cell.

[32]  Bonnie L. Firestein,et al.  Identification of a host protein essential for assembly of immature HIV-1 capsids , 2002, Nature.

[33]  N. Landau,et al.  Chimeric Human Immunodeficiency Virus Type 1 Containing Murine Leukemia Virus Matrix Assembles in Murine Cells , 2002, Journal of Virology.

[34]  Benjamin K. Chen,et al.  Efficient assembly of an HIV-1/MLV Gag-chimeric virus in murine cells , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[35]  G. Wilkie,et al.  Small bristles, the Drosophila ortholog of NXF-1, is essential for mRNA export throughout development. , 2001, RNA.

[36]  E. Izaurralde,et al.  NXF1/p15 heterodimers are essential for mRNA nuclear export in Drosophila. , 2001, RNA.

[37]  J. Steitz,et al.  Delineation of mRNA Export Pathways by the Use of Cell-Permeable Peptides , 2001, Science.

[38]  K. Boris-Lawrie,et al.  Retroviral RNA elements integrate components of post-transcriptional gene expression. , 2001, Life sciences.

[39]  Wesley I. Sundquist,et al.  Tsg101 and the Vacuolar Protein Sorting Pathway Are Essential for HIV-1 Budding , 2001, Cell.

[40]  L. Verplank,et al.  Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55Gag , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[41]  B. Daneholt,et al.  Assembly and transport of a premessenger RNP particle , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[42]  T. Wileman,et al.  Aggresomes Resemble Sites Specialized for Virus Assembly , 2001, The Journal of cell biology.

[43]  H. Kräusslich,et al.  Mouse-Human Heterokaryons Support Efficient Human Immunodeficiency Virus Type 1 Assembly , 2001, Journal of Virology.

[44]  E. Hunter,et al.  Type D Retrovirus Gag Polyprotein Interacts with the Cytosolic Chaperonin TRiC , 2001, Journal of Virology.

[45]  W. Tan,et al.  The mRNA export in Caenorhabditis elegans is mediated by Ce-NXF-1, an ortholog of human TAP/NXF and Saccharomyces cerevisiae Mex67p. , 2000, RNA.

[46]  B. Cullen,et al.  Multiple Blocks to Human Immunodeficiency Virus Type 1 Replication in Rodent Cells , 2000, Journal of Virology.

[47]  A. Kingsman,et al.  A Rev-Independent Human Immunodeficiency Virus Type 1 (HIV-1)-Based Vector That Exploits a Codon-Optimized HIV-1gag-pol Gene , 2000, Journal of virology.

[48]  M. Marsh,et al.  Hsp90 is essential for the synthesis and subsequent membrane association, but not the maintenance, of the Src-kinase p56(lck). , 2000, Molecular biology of the cell.

[49]  T. Hope,et al.  A Block to Human Immunodeficiency Virus Type 1 Assembly in Murine Cells , 2000, Journal of Virology.

[50]  A. Schambach,et al.  Multiple copies of the Mason-Pfizer monkey virus constitutive RNA transport element lead to enhanced HIV-1 Gag expression in a context-dependent manner. , 2000, Nucleic acids research.

[51]  W. Britt,et al.  Accumulation of Virion Tegument and Envelope Proteins in a Stable Cytoplasmic Compartment during Human Cytomegalovirus Replication: Characterization of a Potential Site of Virus Assembly , 2000, Journal of Virology.

[52]  E. Hunter,et al.  Identification of a Cytoplasmic Targeting/Retention Signal in a Retroviral Gag Polyprotein , 1999, Journal of Virology.

[53]  E. Freed,et al.  Binding of Human Immunodeficiency Virus Type 1 Gag to Membrane: Role of the Matrix Amino Terminus , 1999, Journal of Virology.

[54]  R. Jansen RNA–cytoskeletal associations , 1999, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[55]  M. Garber,et al.  The interaction between HIV-1 Tat and human cyclin T1 requires zinc and a critical cysteine residue that is not conserved in the murine CycT1 protein. , 1998, Genes & development.

[56]  E. Freed,et al.  HIV-1 gag proteins: diverse functions in the virus life cycle. , 1998, Virology.

[57]  M. Rosbash,et al.  Nuclear RNA export. , 1998, Genes & development.

[58]  M. Wilm,et al.  TAP, the human homolog of Mex67p, mediates CTE-dependent RNA export from the nucleus. , 1998, Molecular cell.

[59]  Ping Wei,et al.  A Novel CDK9-Associated C-Type Cyclin Interacts Directly with HIV-1 Tat and Mediates Its High-Affinity, Loop-Specific Binding to TAR RNA , 1998, Cell.

[60]  C. K. Grant,et al.  The Vif and Gag proteins of human immunodeficiency virus type 1 colocalize in infected human T cells , 1997, Journal of virology.

[61]  R. Lührmann,et al.  Mex67p, a novel factor for nuclear mRNA export, binds to both poly(A)+ RNA and nuclear pores , 1997, The EMBO journal.

[62]  M. Goldsmith,et al.  Multiple Extracellular Elements of CCR5 and HIV-1 Entry: Dissociation from Response to Chemokines , 1996, Science.

[63]  K. Beemon,et al.  Avian retroviral RNA element promotes unspliced RNA accumulation in the cytoplasm , 1996, Journal of virology.

[64]  Paul E. Kennedy,et al.  HIV-1 Entry Cofactor: Functional cDNA Cloning of a Seven-Transmembrane, G Protein-Coupled Receptor , 1996, Science.

[65]  S. Hughes,et al.  Production of avian leukosis virus particles in mammalian cells can be mediated by the interaction of the human immunodeficiency virus protein Rev and the Rev-responsive element. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[66]  K. Jeang,et al.  A small element from the Mason-Pfizer monkey virus genome makes human immunodeficiency virus type 1 expression and replication Rev-independent. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[67]  M. Malim,et al.  Mutational definition of the human immunodeficiency virus type 1 Rev activation domain , 1991, Journal of virology.

[68]  D. Baltimore,et al.  A human cell factor is essential for HIV‐1 Rev action. , 1990, The EMBO journal.

[69]  E. Hunter,et al.  A single amino acid substitution within the matrix protein of a type D retrovirus converts its morphogenesis to that of a type C retrovirus , 1990, Cell.

[70]  Robin A. Weiss,et al.  The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain , 1986, Cell.

[71]  D. St Johnston,et al.  Getting the message across: the intracellular localization of mRNAs in higher eukaryotes. , 2001, Annual review of cell and developmental biology.

[72]  M. Malim,et al.  The HIV-1 Rev protein. , 1998, Annual review of microbiology.