Recent progress in amplified undersea systems

The advent of the optical amplifiers has removed the loss limitation of the fiber in the conventional undersea systems using 3R (retiming, reshaping, regenerating) repeaters, and it has introduced new design criteria for the undersea lightwave systems. The accumulation of the small impairment factors that was negligible in the conventional system becomes significant to determine the transmission performances of the amplified system. The fiber nonlinearity is a distinctive limitation factor that dominates the transmission performance of the amplified system, although it was not a limitation factor in the conventional system. This paper describes the recent progress of the undersea lightwave cable systems employing optical amplifier repeaters. The limitation factors and the polarization dependent characteristics of the amplified system are described. The system demonstrations with conventional IM-DD technology are presented using both recirculating loop and straight fiber transmission line. The system maintenance method is also explained briefly. Future technologies adopting the WDM or the optical solitons are also discussed. >

[1]  V. Havard,et al.  1111 km, two channel IM-DD transmission experiment at 2.5 Gb/s through 21 in-line erbium-doped fiber amplifiers , 1992, IEEE Photonics Technology Letters.

[2]  M. Tsubokawa,et al.  Limitation of transmission distance and capacity due to polarisation dispersion in a lightwave system , 1988 .

[3]  Masatoshi Suzuki,et al.  Characterization of chromatic dispersion effect on 5-Gbit/s ultralong-distance EDFA transmission using a circulating loop , 1992 .

[4]  A. Naka,et al.  Fibre transmission distance determined by eye opening degradation due to selfphase modulation and group-velocity dispersion , 1992 .

[5]  M. Murakami,et al.  10 Gbit/s, 6000 km transmission experiment using erbium-doped fibre in-line amplifiers , 1992 .

[6]  Y. Niiro The OS-280M optical-fiber submarine cable system , 1984 .

[7]  Shigeyuki Akiba,et al.  9000 km, 5 Gb/s NRZ Transmission Experiment Using 274 Erbium-Doped Fiber-Amplifiers , 1992 .

[8]  Yoshinori Namihira,et al.  Fiber Length Dependence of Polarization Mode Dispersion Measurements in Long-Length Optical Fibers and Installed Optical Submarine Cables , 1991 .

[9]  C. Kurtzke,et al.  Suppression of fiber nonlinearities by appropriate dispersion management , 1993, IEEE Photonics Technology Letters.

[10]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[11]  E. Yamada,et al.  Infinite-distance soliton transmission with soliton controls in time and frequency domains , 1992 .

[12]  M.G. Taylor Observation of new polarization dependence effect in long haul optically amplified system , 1993, IEEE Photonics Technology Letters.

[13]  K. Kikuchi Enhancement of optical-amplifier noise by nonlinear refractive index and group-velocity dispersion of optical fibers , 1993, IEEE Photonics Technology Letters.

[14]  N. Edagawa,et al.  Observation of BER degradation due to fading in long-distance optical amplifier system , 1993 .

[15]  Takamasa Imai,et al.  Over 10,000 km Straight Line Transmission System Experiment at 2.5 Gb / s Using In-Line Optical Amplifiers , 1992 .

[16]  M. Healy,et al.  Polarization-dependent gain in erbium-doped fibers , 1994 .

[17]  N. Edagawa,et al.  Transform-limited optical pulse generation up to 20-GHz repetition rate by a sinusoidally driven InGaAsP electroabsorption modulator , 1992 .

[18]  T. Okoshi,et al.  Effect of frequency offset in DPSK phase-diversity optical receivers , 1988 .

[19]  D. Marcuse Single-channel operation in very long nonlinear fibers with optical amplifiers at zero dispersion , 1991 .

[20]  10 Gbit/s, 1200 km error-free soliton data transmission using erbium-doped fibre amplifiers , 1992 .

[21]  P. Emplit,et al.  Limitations in long haul IM/DD optical fibre systems caused by chromatic dispersion and nonlinear Kerr effect , 1990 .

[22]  N. Edagawa,et al.  The experimental study of the effect of fiber chromatic dispersion upon IM-DD ultra-long distance optical communication systems with Er-doped fiber amplifiers using a 1000 km fiber loop , 1994 .

[23]  N. S. Bergano,et al.  Polarization dispersion and principal states in a 147-km undersea lightwave cable , 1988 .

[24]  Hirokazu Kubota,et al.  Experimental demonstration of soliton data transmission over unlimited distances with soliton control in time and frequency domains , 1993 .

[25]  N. S. Bergano,et al.  Bit error rate measurements of 14000 km 5 Gbit/s fibre-amplifier transmission system using circulating loop , 1991 .

[26]  Takeshi Ozeki,et al.  Polarization-mode-dispersion equalization experiment using a variable equalizing optical circuit controlled by a pulse-waveform-comparison algorithm , 1994 .

[27]  Linn F. Mollenauer,et al.  Demonstration of error-free soliton transmission over more than 15000 km at 5 Gbit/s, single-channel, and over more than 11000 km at 10 Gbit/s in two-channel WDM , 1992 .

[28]  Yasuhiko Niiro Optical Fiber Submarine Cable System Development at KDD , 1983, IEEE J. Sel. Areas Commun..

[29]  H. Haus,et al.  Soliton transmission control. , 1991, Optics letters.

[30]  Naoya Henmi,et al.  A new design arrangement of transmission fiber dispersion for suppressing nonlinear degradation in long-distance optical transmission systems with optical repeater amplifiers , 1993 .

[31]  Jay R. Simpson,et al.  Bit-error-rate investigation of two-channel soliton propagation over more than 10000 km , 1991 .

[32]  A. Chraplyvy,et al.  Fading in lightwave systems due to polarization-mode dispersion , 1990, IEEE Photonics Technology Letters.

[33]  Y. Matsushima,et al.  InGaAsP electroabsorption modulator for high-bit-rate EDFA system , 1992, IEEE Photonics Technology Letters.

[34]  E. Yamada,et al.  Experimental demonstration of soliton data transmission over unlimited distances with soliton control in time and frequency domains , 1993 .

[35]  D. Marcuse,et al.  Effect of fiber nonlinearity on long-distance transmission , 1991 .

[36]  Neal S. Bergano Time dynamics of polarization hole burning in an EDFA , 1994 .

[37]  Shigeyuki Akiba Long-Haul Optical Amplifier System Engineering Based on EDFA Technology , 1993 .

[38]  Kerr Nonlinearity Limits on Transmission Distance and Data Rate of In-Line Optical Amplifier Systems , 1992 .

[39]  V. J. Mazurczyk Polarization Hole Burning in Erbium Doped Fiber Amplifiers. , 1993 .

[40]  Masatoshi Suzuki,et al.  10 Gbit/s, 4500km Transmission Experiment Using 138 Cascaded Er-doped Fiber Amplifiers , 1992 .

[41]  Shigeyuki Akiba,et al.  High-speed electroabsorption modulator with strip-loaded GaInAsP planar waveguide , 1986 .

[42]  N. Edagawa,et al.  5 Gbit/s optical solution transmission experiment over 3000 km employing 91 cascaded Er-doped fibre amplifier repeaters , 1992 .

[43]  A. Hasegawa,et al.  Generation of asymptotically stable optical solitons and suppression of the Gordon-Haus effect. , 1992, Optics letters.

[44]  E. Lichtman Limitations imposed by polarization-dependent gain and loss on all-optical ultralong communication systems , 1995 .

[45]  Yoshinori Namihira,et al.  Long-term polarization-mode-dispersion measurement of installed optical submarine cable , 1994 .

[46]  Linn F. Mollenauer,et al.  Demonstration, using sliding-frequency guiding filters, of error-free soliton transmission over more than 20,000 km at 10 Gbit/s, single-channel, and over more than 13,000 km at 20 Gbit/s in a two-channel WDM , 1993 .

[47]  J. Gordon,et al.  The sliding-frequency guiding filter: an improved form of soliton jitter control. , 1992, Optics letters.

[48]  R. W. Tkach,et al.  160-Gb/s (8 x 20 Gb/s WDM) 300-km Transmission With 50-km Amplifier Spacing and Span-by-Span Dispersion Reversal , 1994 .

[49]  Dietrich Marcuse,et al.  RMS width of pulses in nonlinear dispersive fibers , 1992 .

[50]  10Gbit/s, 9100km Soliton Data Transmission With Alternating-Amplitude Solitons Without Inline Soliton Controls , 1993 .

[51]  N. Edagawa,et al.  459 km, 2.4 Gbit/s four wavelength multiplexing optical fibre transmission experiment using six Er-doped fibre amplifiers , 1990 .

[52]  A. Chraplyvy Limitations on lightwave communications imposed by optical-fiber nonlinearities , 1990 .

[53]  N. Edagawa,et al.  Bit error rate measurement of 2.5 Gbit/s data modulated solitons generated by InGaAsP EA modulator using a circulating loop , 1992 .

[54]  N. S. Bergano,et al.  Polarization scrambling improves SNR performance in a chain of EDFAs , 1994 .

[55]  E. Yamada,et al.  10 Gbit/s soliton data transmission over one million kilometres , 1991 .

[56]  L. Mollenauer,et al.  Demonstration, using sliding-frequency guiding filters, of error-free soliton transmission over more than 20 Mm at 10 Gbit/s, single channel, and over more than 13 Mm at 20 Gbit/s in a two-channel WDM , 1993 .

[57]  N. Edagawa,et al.  904 km, 1.2 Gbit/s non-regenerative optical fibre transmission experiment using 12 Er-doped fibre amplifiers , 1990 .

[58]  Y. Horiuchi,et al.  Novel coherent heterodyne optical time domain reflectometry for fault localization of optical amplifier submarine cable systems , 1990, IEEE Photonics Technology Letters.

[59]  N. S. Bergano,et al.  A 9000 km 5 Gb/s and 21,000 km 2.4 Gb/s Feasibility Demonstration of Transoceanic EDFA Systems Using a Circulating Loop , 1991 .

[60]  N. Olsson Lightwave systems with optical amplifiers , 1989 .

[61]  Noboru Edagawa,et al.  Transform-limited 14 ps optical pulse generation with 15 GHz repetition rate by InGaAsP electroabsorption modulator , 1992 .

[62]  R. A. Lobbett,et al.  39.81 Gbits/s, 43.8 million-way WDM broadcast network with 527 km range , 1991 .

[63]  Andrew Lord,et al.  Assessment of the polarisation loss dependence of transoceanic systems using a recirculating loop , 1993 .

[64]  T. Chikama,et al.  Self-Filtering Characteristics of Concatenated Erbium-Doped Fiber Amplifiers , 1993 .