Flexible neuro-fuzzy systems

In this paper, we derive new neuro-fuzzy structures called flexible neuro-fuzzy inference systems or FLEXNFIS. Based on the input-output data, we learn not only the parameters of the membership functions but also the type of the systems (Mamdani or logical). Moreover, we introduce: 1) softness to fuzzy implication operators, to aggregation of rules and to connectives of antecedents; 2) certainty weights to aggregation of rules and to connectives of antecedents; and 3) parameterized families of T-norms and S-norms to fuzzy implication operators, to aggregation of rules and to connectives of antecedents. Our approach introduces more flexibility to the structure and design of neuro-fuzzy systems. Through computer simulations, we show that Mamdani-type systems are more suitable to approximation problems, whereas logical-type systems may be preferred for classification problems.

[1]  Jeen-Shing Wang,et al.  Self-adaptive neuro-fuzzy inference systems for classification applications , 2002, IEEE Trans. Fuzzy Syst..

[2]  Li-Xin Wang,et al.  Approximation accuracy of some neuro-fuzzy approaches , 2000, IEEE Trans. Fuzzy Syst..

[3]  Jonathan D. Cryer,et al.  Time Series Analysis , 1986 .

[4]  Ronald R. Yager,et al.  Fuzzy logic controller structures , 1991, Other Conferences.

[5]  Rudolf Kruse,et al.  Neuro-fuzzy systems for function approximation , 1999, Fuzzy Sets Syst..

[6]  Robert Babuska,et al.  Data-driven Construction of Transparent Fuzzy Systems , 2001 .

[7]  Keon-Myung Lee,et al.  A fuzzy Neural Network Model for fuzzy Inference and Rule Tuning , 1994, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[8]  Chin-Teng Lin,et al.  An online self-constructing neural fuzzy inference network and its applications , 1998, IEEE Trans. Fuzzy Syst..

[9]  John Yen,et al.  Application of statistical information criteria for optimal fuzzy model construction , 1998, IEEE Trans. Fuzzy Syst..

[10]  Witold Pedrycz Identification in fuzzy systems , 1984, IEEE Transactions on Systems, Man, and Cybernetics.

[11]  Antonio F. Gómez-Skarmeta,et al.  A fuzzy clustering-based rapid prototyping for fuzzy rule-based modeling , 1997, IEEE Trans. Fuzzy Syst..

[12]  Witold Pedrycz,et al.  An Introduction to Fuzzy Sets , 1998 .

[13]  Reza Langari,et al.  Building Sugeno-type models using fuzzy discretization and orthogonal parameter estimation techniques , 1995, IEEE Trans. Fuzzy Syst..

[14]  J. Mendel Fuzzy logic systems for engineering: a tutorial , 1995, Proc. IEEE.

[15]  Ronald R. Yager,et al.  Fuzzy sets, neural networks, and soft computing , 1994 .

[16]  Jacek M. Zurada,et al.  Data-driven design of fuzzy system with relational input partition , 2001, 10th IEEE International Conference on Fuzzy Systems. (Cat. No.01CH37297).

[17]  Hamid R. Berenji,et al.  Learning and tuning fuzzy logic controllers through reinforcements , 1992, IEEE Trans. Neural Networks.

[18]  Ravi Kothari,et al.  Look-ahead based fuzzy decision tree induction , 2001, IEEE Trans. Fuzzy Syst..

[19]  Nikola K. Kasabov,et al.  DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction , 2002, IEEE Trans. Fuzzy Syst..

[20]  Jacek M. Leski,et al.  Fuzzy and Neuro-Fuzzy Intelligent Systems , 2000, Studies in Fuzziness and Soft Computing.

[21]  Danuta Rutkowska,et al.  Neuro-Fuzzy Architectures and Hybrid Learning , 2002, Studies in Fuzziness and Soft Computing.

[22]  Magne Setnes,et al.  Compact and transparent fuzzy models and classifiers through iterative complexity reduction , 2001, IEEE Trans. Fuzzy Syst..

[23]  Yong-Zai Lu,et al.  Fuzzy Model Identification and Self-Learning for Dynamic Systems , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[24]  Korris Fu-Lai Chung,et al.  Cascaded fuzzy neural network model based on syllogistic fuzzy reasoning , 2001, IEEE Trans. Fuzzy Syst..

[25]  J. Mendel Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions , 2001 .

[26]  Yinghua Lin,et al.  A new approach to fuzzy-neural system modeling , 1995, IEEE Trans. Fuzzy Syst..

[27]  Euntai Kim,et al.  A transformed input-domain approach to fuzzy modeling , 1998, IEEE Trans. Fuzzy Syst..

[28]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[29]  Sandip Sen,et al.  Using real-valued genetic algorithms to evolve rule sets for classification , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[30]  Ronald R. Yager,et al.  A general approach to rule aggregation in fuzzy logic control , 1992, Applied Intelligence.

[31]  Derek A. Linkens,et al.  A systematic neuro-fuzzy modeling framework with application to material property prediction , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[32]  Michio Sugeno,et al.  A fuzzy-logic-based approach to qualitative modeling , 1993, IEEE Trans. Fuzzy Syst..

[33]  Nikola K. Kasabov,et al.  Learning fuzzy rules and approximate reasoning in fuzzy neural networks and hybrid systems , 1996, Fuzzy Sets Syst..

[34]  Leszek Rutkowski,et al.  New Soft Computing Techniques for System Modeling, Pattern Classification and Image Processing , 2004 .

[35]  R. Tong The evaluation of fuzzy models derived from experimental data , 1980 .

[36]  Sei-Wang Chen,et al.  Attributed concept maps: fuzzy integration and fuzzy matching , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[37]  Chin-Teng Lin,et al.  An On-Line Self-Constructing Neural Fuzzy Inference Network and Its Applications , 1998 .

[38]  Magne Setnes,et al.  GA-fuzzy modeling and classification: complexity and performance , 2000, IEEE Trans. Fuzzy Syst..

[39]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[40]  R. Jager,et al.  Fuzzy Logic in Control , 1995 .

[41]  Detlef Nauck,et al.  Foundations Of Neuro-Fuzzy Systems , 1997 .

[42]  John Yen,et al.  Simplifying fuzzy rule-based models using orthogonal transformation methods , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[43]  Hisao Ishibuchi,et al.  Effect of rule weights in fuzzy rule-based classification systems , 2001, IEEE Trans. Fuzzy Syst..

[44]  Leszek Rutkowski,et al.  Designing and learning of adjustable quasi-triangular norms with applications to neuro-fuzzy systems , 2005, IEEE Transactions on Fuzzy Systems.

[45]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[46]  Marian B. Gorzalczany Computational Intelligence Systems and Applications - Neuro-Fuzzy and Fuzzy Neural Synergisms , 2002, Studies in Fuzziness and Soft Computing.

[47]  Euntai Kim,et al.  A new approach to fuzzy modeling , 1997, IEEE Trans. Fuzzy Syst..

[48]  Jacek M. Zurada,et al.  Fuzzy neural network with relational fuzzy rules , 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium.

[49]  W. Pedrycz An identification algorithm in fuzzy relational systems , 1984 .

[50]  Leszek Rutkowski,et al.  Neural Networks and Soft Computing , 2003 .

[51]  Rudolf Kruse,et al.  How the learning of rule weights affects the interpretability of fuzzy systems , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).

[52]  Daniel S. Yeung,et al.  A multilevel weighted fuzzy reasoning algorithm for expert systems , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[53]  Antonio González Muñoz,et al.  SLAVE: a genetic learning system based on an iterative approach , 1999, IEEE Trans. Fuzzy Syst..

[54]  Witold Pedrycz,et al.  Fuzzy neural networks with reference neurons as pattern classifiers , 1992, IEEE Trans. Neural Networks.

[55]  W. Pedrycz,et al.  Construction of fuzzy models through clustering techniques , 1993 .

[56]  Kazuo Tanaka,et al.  Successive identification of a fuzzy model and its applications to prediction of a complex system , 1991 .

[57]  J. Fodor On fuzzy implication operators , 1991 .

[58]  Leszek Rutkowski,et al.  A general approach to neuro-fuzzy systems , 2001, 10th IEEE International Conference on Fuzzy Systems. (Cat. No.01CH37297).

[59]  Christian Eitzinger,et al.  Triangular Norms , 2001, Künstliche Intell..

[60]  Hisao Ishibuchi,et al.  A simple but powerful heuristic method for generating fuzzy rules from numerical data , 1997, Fuzzy Sets Syst..

[61]  Hisao Ishibuchi,et al.  Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[62]  John Yen,et al.  Extracting fuzzy rules for system modeling using a hybrid of genetic algorithms and Kalman filter , 1999, Fuzzy Sets Syst..

[63]  C. S. George Lee,et al.  Neural fuzzy systems: a neuro-fuzzy synergism to intelligent systems , 1996 .

[64]  Francesc Esteva,et al.  Review of Triangular norms by E. P. Klement, R. Mesiar and E. Pap. Kluwer Academic Publishers , 2003 .

[65]  Chuen-Tsai Sun,et al.  Neuro-fuzzy modeling and control , 1995, Proc. IEEE.

[66]  Daniel S. Yeung,et al.  Tuning certainty factor and local weight of fuzzy production rules by using fuzzy neural network , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[67]  Shyh Hwang,et al.  An identification algorithm in fuzzy relational systems , 1996, Soft Computing in Intelligent Systems and Information Processing. Proceedings of the 1996 Asian Fuzzy Systems Symposium.

[68]  Chin-Teng Lin,et al.  Neural-Network-Based Fuzzy Logic Control and Decision System , 1991, IEEE Trans. Computers.

[69]  Li-Xin Wang,et al.  Adaptive fuzzy systems and control , 1994 .

[70]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1972 .

[71]  Nikola Kasabov,et al.  Foundations Of Neural Networks, Fuzzy Systems, And Knowledge Engineering [Books in Brief] , 1996, IEEE Transactions on Neural Networks.

[72]  Song-Shyong Chen,et al.  Robust TSK fuzzy modeling for function approximation with outliers , 2001, IEEE Trans. Fuzzy Syst..

[73]  Chin-Teng Lin,et al.  A neural fuzzy system with linguistic teaching signals , 1995, IEEE Trans. Fuzzy Syst..

[74]  Hao Ying,et al.  Essentials of fuzzy modeling and control , 1995 .