Distance correlation-based method for global sensitivity analysis of models with dependent inputs

Global sensitivity analysis (GSA) plays an important role to quantify the relative importance of uncertain parameters to the model response. However, performing quantitative GSA directly is still a challenging problem for complex models with dependent inputs. A novel method is proposed for screening dependent inputs in the study. The proposed method inherits the capability of easily handing multivariate dependence from the distance correlation. With the help of a projection operator in the Hilbert space, it can work without knowing the specific conditional distribution of inputs. The advantages of the proposed method are discussed and demonstrated through applications to numerical and environmental modeling examples containing many dependent variables. Compared to classical GSA methods with dependent variables, the proposed method can be easily used, while the accuracy of inputs screening is well maintained.

[1]  Andrea Saltelli,et al.  From screening to quantitative sensitivity analysis. A unified approach , 2011, Comput. Phys. Commun..

[2]  Sébastien Da Veiga,et al.  Global sensitivity analysis with dependence measures , 2013, ArXiv.

[3]  R. Nelsen An Introduction to Copulas , 1998 .

[4]  Paola Annoni,et al.  Non-parametric methods for global sensitivity analysis of model output with dependent inputs , 2015, Environ. Model. Softw..

[5]  Fabrice Gamboa,et al.  Local Polynomial Estimation for Sensitivity Analysis on Models With Correlated Inputs , 2008, Technometrics.

[6]  Biagio Ciuffo,et al.  An Exploratory Study of Two Efficient Approaches for the Sensitivity Analysis of Computationally Expensive Traffic Simulation Models , 2014, IEEE Transactions on Intelligent Transportation Systems.

[7]  Zhenzhou Lu,et al.  A Bayesian Monte Carlo-based method for efficient computation of global sensitivity indices , 2019, Mechanical Systems and Signal Processing.

[8]  Zdeněk Kala,et al.  Global sensitivity analysis of lateral-torsional buckling resistance based on finite element simulations , 2017 .

[9]  Amandine Marrel,et al.  Sensitivity analysis with dependence and variance-based measures for spatio-temporal numerical simulators , 2017, Stochastic Environmental Research and Risk Assessment.

[10]  T. Klein,et al.  Asymptotic normality and efficiency of two Sobol index estimators , 2013, 1303.6451.

[11]  A. Saltelli,et al.  On the Relative Importance of Input Factors in Mathematical Models , 2002 .

[12]  Maria L. Rizzo,et al.  Measuring and testing dependence by correlation of distances , 2007, 0803.4101.

[13]  R. Iman,et al.  A distribution-free approach to inducing rank correlation among input variables , 1982 .

[14]  Francesca Pianosi,et al.  A Matlab toolbox for Global Sensitivity Analysis , 2015, Environ. Model. Softw..

[15]  A. S. Hamilton,et al.  ESTIMATING WINTER STREAMFLOW USING CONCEPTUAL STREAMFLOW MODEL , 2000 .

[16]  Saltelli Andrea,et al.  Global Sensitivity Analysis: The Primer , 2008 .

[17]  Andrea Saltelli,et al.  Sensitivity Analysis for Importance Assessment , 2002, Risk analysis : an official publication of the Society for Risk Analysis.

[18]  Emanuele Borgonovo,et al.  A new uncertainty importance measure , 2007, Reliab. Eng. Syst. Saf..

[19]  I. Sobol Uniformly distributed sequences with an additional uniform property , 1976 .

[20]  Kaichao Zhang,et al.  Analytical variance based global sensitivity analysis for models with correlated variables , 2017 .

[21]  Dirk P. Kroese,et al.  Kernel density estimation via diffusion , 2010, 1011.2602.

[22]  Emanuele Borgonovo,et al.  Global sensitivity measures from given data , 2013, Eur. J. Oper. Res..

[23]  Francesca Pianosi,et al.  Comparison of variance-based and moment-independent global sensitivity analysis approaches by application to the SWAT model , 2017, Environ. Model. Softw..

[24]  R. Lyons Distance covariance in metric spaces , 2011, 1106.5758.

[25]  Patrick M. Reed,et al.  When are multiobjective calibration trade‐offs in hydrologic models meaningful? , 2012 .

[26]  Herschel Rabitz,et al.  An efficient algorithm to accelerate the discovery of complex material formulations. , 2010, The Journal of chemical physics.

[27]  Nilay Shah,et al.  Global sensitivity analysis using sparse high dimensional model representations generated by the group method of data handling , 2016, Math. Comput. Simul..

[28]  Andrea Saltelli,et al.  An effective screening design for sensitivity analysis of large models , 2007, Environ. Model. Softw..

[29]  Thierry Alex Mara,et al.  Variance-based sensitivity indices for models with dependent inputs , 2012, Reliab. Eng. Syst. Saf..

[30]  Monica Menendez,et al.  An Efficient Sensitivity Analysis Approach for Computationally Expensive Microscopic Traffic Simulation Models , 2014 .

[31]  Z. Kala,et al.  Imperfection sensitivity analysis of steel columns at ultimate limit state , 2018, Archives of Civil and Mechanical Engineering.

[32]  Andrea Saltelli,et al.  Screening important inputs in models with strong interaction properties , 2009, Reliab. Eng. Syst. Saf..

[33]  Gábor J. Székely,et al.  The distance correlation t-test of independence in high dimension , 2013, J. Multivar. Anal..

[34]  Zhenzhou Lu,et al.  Aircraft Icing Severity Analysis Considering Three Uncertainty Types , 2019, AIAA Journal.

[35]  A. Marrel,et al.  New improvements in the use of dependence measures for sensitivity analysis and screening , 2014, 1412.1414.

[36]  Zhenzhou Lu,et al.  An efficient method for moment-independent global sensitivity analysis by dimensional reduction technique and principle of maximum entropy , 2019, Reliab. Eng. Syst. Saf..

[37]  Xiaoming Huo,et al.  Fast Computing for Distance Covariance , 2014, Technometrics.

[38]  Zhenzhou Lu,et al.  Multivariate global sensitivity analysis for dynamic models based on energy distance , 2017, Structural and Multidisciplinary Optimization.

[39]  Max D. Morris,et al.  Factorial sampling plans for preliminary computational experiments , 1991 .

[40]  Runze Li,et al.  Feature Screening via Distance Correlation Learning , 2012, Journal of the American Statistical Association.

[41]  Zhenzhou Lu,et al.  Sparse polynomial chaos expansions for global sensitivity analysis with partial least squares and distance correlation , 2018, Structural and Multidisciplinary Optimization.

[42]  Chonggang Xu,et al.  Decoupling correlated and uncorrelated parametric uncertainty contributions for nonlinear models , 2013 .

[43]  Göran Lindström,et al.  A Simple Automatic Calibration Routine for the HBV Model , 1997 .

[44]  Monica Menendez,et al.  Extending Morris method for qualitative global sensitivity analysis of models with dependent inputs , 2017, Reliab. Eng. Syst. Saf..

[45]  Zhenzhou Lu,et al.  Moment independent sensitivity analysis with correlations , 2014 .

[46]  Zhenzhou Lu,et al.  Generalized sensitivity indices based on vector projection for multivariate output , 2019, Applied Mathematical Modelling.

[47]  Zhenzhou Lu,et al.  Sparse grid integration based solutions for moment-independent importance measures , 2015 .

[48]  Maria L. Rizzo,et al.  Energy distance , 2016 .

[49]  Ilya M. Sobol,et al.  Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .

[50]  Art B. Owen,et al.  Better estimation of small sobol' sensitivity indices , 2012, TOMC.

[51]  Maria L. Rizzo,et al.  Partial Distance Correlation with Methods for Dissimilarities , 2013, 1310.2926.

[52]  Bernhard Schölkopf,et al.  Measuring Statistical Dependence with Hilbert-Schmidt Norms , 2005, ALT.

[53]  Leigang Zhang,et al.  Borgonovo moment independent global sensitivity analysis by Gaussian radial basis function meta-model , 2018 .

[54]  Joseph Hart,et al.  An approximation theoretic perspective of the Sobol' indices with dependent variables. , 2017, 1801.01359.

[55]  Sergei S. Kucherenko,et al.  Derivative based global sensitivity measures and their link with global sensitivity indices , 2009, Math. Comput. Simul..