Cold ion chemistry within a Rydberg-electron orbit: test of the spectator role of the Rydberg electron in the He(n) + CO → C(n′) + O + He reaction

[1]  F. Merkt,et al.  Deviation of the rate of the reaction from Langevin behaviour below 1 K, branching ratios for the and product channels, and product-kinetic-energy distributions , 2021, Molecular Physics.

[2]  F. Merkt,et al.  The H2+ + HD reaction at low collision energies: H3+/H2D+ branching ratio and product-kinetic-energy distributions. , 2021, Physical chemistry chemical physics : PCCP.

[3]  F. Merkt,et al.  Ion-Molecule Reactions below 1 K: Strong Enhancement of the Reaction Rate of the Ion-Dipole Reaction He^{+}+CH_{3}F. , 2020, Physical review letters.

[4]  J. Gauss,et al.  Vibrational Excitation Hindering an Ion-Molecule Reaction: The c-C_{3}H_{2}^{+}-H_{2} Collision Complex. , 2020, Physical review letters.

[5]  M. Meuwly,et al.  Long-range versus short-range effects in cold molecular ion-neutral collisions , 2019, Nature Communications.

[6]  V. Zhelyazkova,et al.  Fluorescence-lifetime-limited trapping of Rydberg helium atoms on a chip , 2019, Molecular Physics.

[7]  F. Merkt,et al.  Half-Collision Approach to Cold Chemistry: Shape Resonances, Elastic Scattering, and Radiative Association in the H++H and D++D Collision Systems , 2018, Physical Review X.

[8]  D. Gerlich,et al.  Formation of H2O+ and H3O+ Cations in Reactions of OH+ and H2O+ with H2: Experimental Studies of the Reaction Rate Coefficients from T = 15 to 300 K , 2018 .

[9]  E. E. Nikitin,et al.  Relocking of intrinsic angular momenta in collisions of diatoms with ions: Capture of H2(j = 0,1) by H2. , 2016, The Journal of chemical physics.

[10]  F. Merkt,et al.  Observation of enhanced rate coefficients in the H2++H2→H3++H reaction at low collision energies. , 2016, The Journal of chemical physics.

[11]  F. Merkt,et al.  New Method to Study Ion-Molecule Reactions at Low Temperatures and Application to the H2++H2→H3++H Reaction. , 2016, Chemphyschem : a European journal of chemical physics and physical chemistry.

[12]  P. Pillet,et al.  Radiative and collisional processes in translationally cold samples of hydrogen Rydberg atoms studied in an electrostatic trap , 2016, 1704.03278.

[13]  D. Hauser,et al.  Correction: Corrigendum: Rotational state-changing cold collisions of hydroxyl ions with helium , 2015, Nature Physics.

[14]  B. R. Heazlewood,et al.  Low-temperature kinetics and dynamics with Coulomb crystals. , 2015, Annual review of physical chemistry.

[15]  R. Wester,et al.  H/D exchange in reactions of OH(-) with D2 and of OD(-) with H2 at low temperatures. , 2015, Physical chemistry chemical physics : PCCP.

[16]  M. Drewsen Ion Coulomb crystals , 2015 .

[17]  F. Merkt,et al.  Surface-electrode decelerator and deflector for Rydberg atoms and molecules , 2014 .

[18]  S. Willitsch Coulomb-crystallised molecular ions in traps: methods, applications, prospects , 2012 .

[19]  H. Schmutz,et al.  Surface-electrode Rydberg-Stark decelerator. , 2012, Physical review letters.

[20]  T. Mehner,et al.  REACTIONS OF COLD TRAPPED CH+ IONS WITH SLOW H ATOMS , 2011 .

[21]  M. Matsuzawa Highly excited Rydberg electron as a spectator to an ion-molecule reaction , 2010 .

[22]  M. Auzinsh,et al.  Nonadiabatic transitions between lambda-doubling states in the capture of a diatomic molecule by an ion. , 2008, The Journal of chemical physics.

[23]  E. E. Nikitin,et al.  Rates of complex formation in collisions of rotationally excited homonuclear diatoms with ions at very low temperatures: application to hydrogen isotopes and hydrogen-containing ions. , 2005, The Journal of chemical physics.

[24]  E. Wrede,et al.  Reactive scattering of rydberg atoms: H* + D2 --> HD + D*. , 2005, Physical chemistry chemical physics : PCCP.

[25]  U. Hollenstein,et al.  Selective field ionization of high Rydberg states: Application to zero-kinetic-energy photoelectron spectroscopy , 2001 .

[26]  F. Robicheaux,et al.  High-np Rydberg states of atomic carbon studied through vuv and uv double resonance , 1998 .

[27]  R. E. Raab,et al.  Measurement of the electric quadrupole moments of CO2, CO, N2, Cl2 and BF3 , 1998 .

[28]  J. Troe Statistical adiabatic channel model for ion–molecule capture processes. II. Analytical treatment of ion–dipole capture , 1996 .

[29]  B. Rowe,et al.  FALP and CRESU studies of ionic reactions , 1995 .

[30]  W. Chupka,et al.  Rydberg State Reactions of Atomic and Molecular Hydrogen , 1995 .

[31]  S. Pratt,et al.  Reactions of Rydberg states of molecular hydrogen , 1994 .

[32]  D. Clary,et al.  Rate constant calculations for ion–symmetric top and ion–asymmetric top reactions , 1992 .

[33]  Drake,et al.  Quantum defects and the 1/n dependence of Rydberg energies: Second-order polarization effects. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[34]  D. Clary FAST CHEMICAL REACTIONS: Theory Challenges Experiment , 1990 .

[35]  J. Marquette,et al.  CRESU studies of ion/molecule reactions , 1987 .

[36]  J. Troe Statistical adiabatic channel model for ion–molecule capture processes , 1987 .

[37]  B. Rowe,et al.  Ion—polar-molecule reactions: A CRESU study of He+, C+, N+ + H2O, NH3 at 27, 68 and 163 K , 1985 .

[38]  D. Clary,et al.  Temperature dependence of rate coefficients for reactions of ions with dipolar molecules , 1985 .

[39]  D. Clary Calculations of rate constants for ion-molecule reactions using a combined capture and centrifugal sudden approximation , 1985 .

[40]  E. Ferguson,et al.  Reactions of He+ and N+ ions with several molecules at 8 K , 1985 .

[41]  T. Grozdanov,et al.  Influence of the atomic core on the Stark structure of alkali atom Rydberg states , 1980 .

[42]  D. Kleppner,et al.  Stark structure of the Rydberg states of alkali-metal atoms , 1979 .

[43]  I. Mclaren,et al.  TIME-OF-FLIGHT MASS SPECTROMETER WITH IMPROVED RESOLUTION , 1955 .

[44]  E. Fermi Sopra lo Spostamento per Pressione delle Righe Elevate delle Serie Spettrali , 1934 .