Topic-Based Influence Computation in Social Networks Under Resource Constraints

As social networks are constantly changing and evolving, methods to analyze dynamic social networks are becoming more important in understanding social trends. However, due to the restrictions imposed by the social network service providers, the resources available to fetch the entire contents of a social network are typically very limited. As a result, analysis of dynamic social network data requires maintaining an approximate copy of the social network for each time period, locally. In this paper, we study the problem of dynamic network and text fetching with limited probing capacities, for identifying and maintaining influential users as the social network evolves. We propose an algorithm to probe the relationships (required for global influence computation) as well as posts (required for topic-based influence computation) of a limited number of users during each probing period, based on the influence trends and activities of the users. We infer the current network based on the newly probed user data and the last known version of the network maintained locally. Additionally, we propose to use link prediction methods to further increase the accuracy of our network inference. We employ PageRank as the metric for influence computation. We illustrate how the proposed solution maintains accurate PageRank scores for computing global influence, and topic-sensitive weighted PageRank scores for topic-based influence. The latter relies on a topic-based network constructed via weights determined by semantic analysis of posts and their sharing statistics. We evaluate the effectiveness of our algorithms by comparing them with the true influence scores of the full and up-to-date version of the network, using data from the micro-blogging service Twitter. Results show that our techniques significantly outperform baseline methods (80 percent higher accuracy for network fetching and 77 percent for text fetching) and are superior to state-of-the-art techniques from the literature (21 percent higher accuracy).

[1]  Sourav S. Bhowmick,et al.  CASINO: towards conformity-aware social influence analysis in online social networks , 2011, CIKM '11.

[2]  Krishna P. Gummadi,et al.  Measuring User Influence in Twitter: The Million Follower Fallacy , 2010, ICWSM.

[3]  Sarit Kraus,et al.  Diffusion Centrality in Social Networks , 2012, 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining.

[4]  Spyros Makridakis,et al.  ARMA Models and the Box–Jenkins Methodology , 1997 .

[5]  Tom A. B. Snijders,et al.  Social Network Analysis , 2011, International Encyclopedia of Statistical Science.

[6]  T. Snijders,et al.  Bayesian inference for dynamic social network data , 2007 .

[7]  Le Song,et al.  Time-Varying Dynamic Bayesian Networks , 2009, NIPS.

[8]  Sandeep Pandey,et al.  User-centric Web crawling , 2005, WWW '05.

[9]  Philip S. Yu,et al.  Optimal crawling strategies for web search engines , 2002, WWW '02.

[10]  Jiawei Han,et al.  The Joint Inference of Topic Diffusion and Evolution in Social Communities , 2011, 2011 IEEE 11th International Conference on Data Mining.

[11]  Rediet Abebe Can Cascades be Predicted? , 2014 .

[12]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994, Structural analysis in the social sciences.

[13]  Linyuan Lu,et al.  Link Prediction in Complex Networks: A Survey , 2010, ArXiv.

[14]  Wenpu Xing,et al.  Weighted PageRank algorithm , 2004, Proceedings. Second Annual Conference on Communication Networks and Services Research, 2004..

[15]  Ravi Kumar,et al.  Influence and correlation in social networks , 2008, KDD.

[16]  Eli Upfal,et al.  PageRank on an evolving graph , 2012, KDD.

[17]  George Valkanas,et al.  Mining Twitter Data with Resource Constraints , 2014, 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT).

[18]  Éva Tardos,et al.  Maximizing the Spread of Influence through a Social Network , 2015, Theory Comput..

[19]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[20]  Gautam Das,et al.  Walk, Not Wait: Faster Sampling Over Online Social Networks , 2014, Proc. VLDB Endow..

[21]  Jure Leskovec,et al.  Patterns of temporal variation in online media , 2011, WSDM '11.

[22]  Hector Garcia-Molina,et al.  Effective page refresh policies for Web crawlers , 2003, TODS.

[23]  Ben Taskar,et al.  Learning Probabilistic Models of Link Structure , 2003, J. Mach. Learn. Res..

[24]  Brian D. Davison,et al.  Empirical study of topic modeling in Twitter , 2010, SOMA '10.

[25]  Le Song,et al.  Uncover Topic-Sensitive Information Diffusion Networks , 2013, AISTATS.

[26]  Ashish Goel,et al.  Fast Incremental and Personalized PageRank , 2010, Proc. VLDB Endow..

[27]  Jure Leskovec,et al.  Modeling Information Diffusion in Implicit Networks , 2010, 2010 IEEE International Conference on Data Mining.

[28]  Jon M. Kleinberg,et al.  The link-prediction problem for social networks , 2007, J. Assoc. Inf. Sci. Technol..

[29]  Éva Tardos,et al.  Influential Nodes in a Diffusion Model for Social Networks , 2005, ICALP.

[30]  Le Song,et al.  Learning Networks of Heterogeneous Influence , 2012, NIPS.

[31]  Bernhard Schölkopf,et al.  Uncovering the Temporal Dynamics of Diffusion Networks , 2011, ICML.

[32]  Nick Koudas,et al.  Sampling Online Social Networks , 2013, IEEE Transactions on Knowledge and Data Engineering.

[33]  Laks V. S. Lakshmanan,et al.  Learning influence probabilities in social networks , 2010, WSDM '10.

[34]  Jinhui Tang,et al.  Online Topic-Aware Influence Maximization , 2015, Proc. VLDB Endow..

[35]  Taher H. Haveliwala Topic-sensitive PageRank , 2002, IEEE Trans. Knowl. Data Eng..

[36]  Jimeng Sun,et al.  Confluence: conformity influence in large social networks , 2013, KDD.

[37]  Jimeng Sun,et al.  Social influence analysis in large-scale networks , 2009, KDD.

[38]  SzaboGabor,et al.  Predicting the popularity of online content , 2010 .

[39]  Zoubin Ghahramani,et al.  Learning Dynamic Bayesian Networks , 1997, Summer School on Neural Networks.

[40]  Thomas L. Griffiths,et al.  The Author-Topic Model for Authors and Documents , 2004, UAI.

[41]  Jure Leskovec,et al.  Inferring networks of diffusion and influence , 2010, KDD.

[42]  Jure Leskovec,et al.  Supervised random walks: predicting and recommending links in social networks , 2010, WSDM '11.

[43]  Ben Taskar,et al.  Link Prediction in Relational Data , 2003, NIPS.

[44]  Jie Tang,et al.  Influence Maximization in Dynamic Social Networks , 2013, 2013 IEEE 13th International Conference on Data Mining.

[45]  D. Taussky,et al.  Twitter , 2020, American journal of clinical oncology.

[46]  Brian D. Davison,et al.  Predicting popular messages in Twitter , 2011, WWW.

[47]  Sandeep Pandey,et al.  Recrawl scheduling based on information longevity , 2008, WWW.

[48]  Jiawei Han,et al.  Mining topic-level influence in heterogeneous networks , 2010, CIKM.

[49]  Jon Kleinberg,et al.  The link prediction problem for social networks , 2003, CIKM '03.

[50]  Mor Naaman,et al.  Is it really about me?: message content in social awareness streams , 2010, CSCW '10.

[51]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[52]  Matthew Richardson,et al.  Mining the network value of customers , 2001, KDD '01.

[53]  Bernardo A. Huberman,et al.  Predicting the popularity of online content , 2008, Commun. ACM.

[54]  Chun Chen,et al.  Whom to mention: expand the diffusion of tweets by @ recommendation on micro-blogging systems , 2013, WWW.

[55]  Jon Kleinberg,et al.  Maximizing the spread of influence through a social network , 2003, KDD '03.

[56]  Qi He,et al.  TwitterRank: finding topic-sensitive influential twitterers , 2010, WSDM '10.

[57]  Andreas Krause,et al.  Cost-effective outbreak detection in networks , 2007, KDD '07.

[58]  Jaideep Srivastava,et al.  Incremental page rank computation on evolving graphs , 2005, WWW '05.

[59]  Jure Leskovec,et al.  Microscopic evolution of social networks , 2008, KDD.

[60]  Hector Garcia-Molina,et al.  Estimating frequency of change , 2003, TOIT.

[61]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[62]  Yoshihiro Yamanishi,et al.  Supervised Graph Inference , 2004, NIPS.

[63]  Wei Chen,et al.  Efficient influence maximization in social networks , 2009, KDD.

[64]  Ali Daud,et al.  Finding Rising Stars in Social Networks , 2013, DASFAA.

[65]  See-Kiong Ng,et al.  Searching for Rising Stars in Bibliography Networks , 2009, DASFAA.

[66]  Wei Chen,et al.  Scalable influence maximization for prevalent viral marketing in large-scale social networks , 2010, KDD.

[67]  Frank Stajano,et al.  Eight friends are enough: social graph approximation via public listings , 2009, SNS '09.

[68]  Jure Leskovec,et al.  On the Convexity of Latent Social Network Inference , 2010, NIPS.

[69]  Deng Cai,et al.  Topic modeling with network regularization , 2008, WWW.

[70]  Hamish Fulton Walk , 2010 .