Electric and magnetic resonances in arrays of coupled gold nanoparticle in-tandem pairs.

We present an experimental and theoretical study on the optical properties of arrays of gold nanoparticle in-tandem pairs (nanosandwiches). The well-ordered Au pairs with diameters down to 35 nm and separation distances down to 10 nm were fabricated using extreme ultraviolet (EUV) interference lithography. The strong near-field coupling of the nanoparticles leads to electric and magnetic resonances, which can be well reproduced by Finite-Difference Time-Domain (FDTD) calculations. The influence of the structural parameters, such as nanoparticle diameter and separation distance, on the hybridized modes is investigated. The energy and lifetimes of these modes are studied, providing valuable physical insight for the design of novel plasmonic structures and metamaterials.

[1]  Olivier J. F. Martin,et al.  Controlling the Fano interference in a plasmonic lattice , 2007 .

[2]  Feldmann,et al.  Drastic reduction of plasmon damping in gold nanorods. , 2002, Physical review letters.

[3]  G. Steinmeyer,et al.  Femtosecond light transmission and subradiant damping in plasmonic crystals. , 2005, Physical review letters.

[4]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[5]  Mikael Käll,et al.  Gold-silica-gold nanosandwiches: tunable bimodal plasmonic resonators. , 2007, Small.

[6]  Stefan Linden,et al.  Large-area magnetic metamaterials via compact interference lithography. , 2007, Optics express.

[7]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[8]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[9]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[10]  C. Haynes,et al.  Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays † , 2003 .

[11]  Wenshan Cai,et al.  A negative permeability material at red light. , 2007, Optics express.

[12]  Arto V. Nurmikko,et al.  Strongly Interacting Plasmon Nanoparticle Pairs: From Dipole−Dipole Interaction to Conductively Coupled Regime , 2004 .

[13]  G. von Plessen,et al.  Radiation damping in metal nanoparticle pairs. , 2007, Nano letters.

[14]  Qi-Huo Wei,et al.  Tunable and augmented plasmon resonances of Au∕SiO2∕Au nanodisks , 2006 .

[15]  R. V. Van Duyne,et al.  Localized surface plasmon resonance spectroscopy and sensing. , 2007, Annual review of physical chemistry.

[16]  Yasin Ekinci,et al.  Photon-beam lithography reaches 12.5nm half-pitch resolution , 2007 .

[17]  H. Metiu Surface enhanced spectroscopy , 1984 .

[18]  U. Kreibig,et al.  Optical properties of aggregates of small metal particles , 1986 .

[19]  M. S. Abrishamian,et al.  Magnetic-field enhancement in gold nanosandwiches. , 2006, Optics express.

[20]  Xu,et al.  Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  Emil Prodan,et al.  Plasmon Hybridization in Nanoparticle Dimers , 2004 .

[22]  Yasin Ekinci,et al.  20nm Line/space patterns in HSQ fabricated by EUV interference lithography , 2007 .

[23]  V. Weisskopf,et al.  Effects of Configuration Interaction on Intensities and Phase Shifts , 2001 .

[24]  G. Schatz,et al.  Electromagnetic Mechanism of Surface-enhanced Spectroscopy , 2006 .

[25]  Shanhui Fan,et al.  Analysis of guided resonances in photonic crystal slabs , 2002 .

[26]  P. Barber Absorption and scattering of light by small particles , 1984 .

[27]  James P. Gordon,et al.  Radiation Damping in Surface-Enhanced Raman Scattering , 1982 .

[28]  J. Chalmers,et al.  Handbook of vibrational spectroscopy , 2002 .

[29]  Bernhard Lamprecht,et al.  Optical properties of two interacting gold nanoparticles , 2003 .

[30]  David R. Smith,et al.  Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles , 2003 .