Multi-symplectic wavelet collocation method for the nonlinear Schrödinger equation and the Camassa-Holm equation

Abstract In this paper, we develop a novel multi-symplectic wavelet collocation method for solving multi-symplectic Hamiltonian system with periodic boundary conditions. Based on the autocorrelation function of Daubechies scaling functions, collocation method is conducted for the spatial discretization. The obtained semi-discrete system is proved to have semi-discrete multi-symplectic conservation laws and semi-discrete energy conservation laws. Then, appropriate symplectic scheme is applied for time integration, which leads to full-discrete multi-symplectic conservation laws. Numerical experiments for the nonlinear Schrodinger equation and Camassa–Holm equation show the high accuracy, effectiveness and good conservation properties of the proposed method.

[1]  Xavier Raynaud,et al.  Convergence of a spectral projection of the Camassa‐Holm equation , 2006 .

[2]  Liu Zhen,et al.  Symplectic and multisymplectic schemes with the simple finite element method , 2003 .

[3]  Theodore E. Simos,et al.  P-stability, Trigonometric-fitting and the numerical solution of the radial Schrödinger equation , 2009, Comput. Phys. Commun..

[4]  Ying Liu,et al.  Globally conservative properties and error estimation of a multi-symplectic scheme for Schrödinger equations with variable coefficients , 2006 .

[5]  Yifa Tang,et al.  Symplectic and multi-symplectic methods for the nonlinear Schrodinger equation , 2002 .

[6]  Yan Xu,et al.  A Local Discontinuous Galerkin Method for the Camassa-Holm Equation , 2008, SIAM J. Numer. Anal..

[7]  S. Reich,et al.  Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity , 2001 .

[8]  S. Bertoluzza,et al.  A Wavelet Collocation Method for the Numerical Solution of Partial Differential Equations , 1996 .

[9]  U. Ascher,et al.  Multisymplectic box schemes and the Korteweg{de Vries equation , 2004 .

[10]  Xinsheng Zhao,et al.  Numerical methods with a high order of accuracy applied in the quantum system , 1996 .

[11]  S. Reich Multi-Symplectic Runge—Kutta Collocation Methods for Hamiltonian Wave Equations , 2000 .

[12]  Shuen-De Wu,et al.  Open Newton–Cotes differential methods as multilayer symplectic integrators , 1997 .

[13]  Songhe Song,et al.  Symplectic wavelet collocation method for Hamiltonian wave equations , 2010, J. Comput. Phys..

[14]  Samuel Paolucci,et al.  A multilevel wavelet collocation method for solving partial differential equations in a finite domain , 1995 .

[15]  R. McLachlan Symplectic integration of Hamiltonian wave equations , 1993 .

[16]  Darryl D. Holm,et al.  An integrable shallow water equation with peaked solitons. , 1993, Physical review letters.

[17]  R. Van Keer,et al.  Finite element approximation for 2nd order elliptic eigenvalue problems with nonlocal boundary or transition conditions , 1997 .

[18]  Chi-Wang Shu,et al.  Local discontinuous Galerkin methods for nonlinear Schrödinger equations , 2005 .

[19]  Jianwei Ma An exploration of multiresolution symplectic scheme for wave propagation using second-generation wavelets , 2004 .

[20]  C. Schober,et al.  Geometric integrators for the nonlinear Schrödinger equation , 2001 .

[21]  C. Schober,et al.  On the preservation of phase space structure under multisymplectic discretization , 2004 .

[22]  Robert Artebrant,et al.  Numerical simulation of Camassa-Holm peakons by adaptive upwinding , 2006 .

[23]  Zacharoula Kalogiratou,et al.  Newton--Cotes formulae for long-time integration , 2003 .

[24]  Jian Wang Multisymplectic numerical method for the Zakharov system , 2009, Comput. Phys. Commun..

[25]  H. Kalisch,et al.  Numerical study of traveling-wave solutions for the Camassa-Holm equation , 2005 .

[26]  Uri M. Ascher,et al.  On Symplectic and Multisymplectic Schemes for the KdV Equation , 2005, J. Sci. Comput..

[27]  S. Reich,et al.  Multi-symplectic spectral discretizations for the Zakharov–Kuznetsov and shallow water equations , 2001 .

[28]  Songhe Song,et al.  Multi-symplectic splitting method for the coupled nonlinear Schrödinger equation , 2010, Comput. Phys. Commun..

[29]  Kenneth H. Karlsen,et al.  A Convergent Finite Difference Scheme for the Camassa-Holm Equation with General H1 Initial Data , 2008, SIAM J. Numer. Anal..

[30]  Theodore E. Simos,et al.  High order closed Newton-Cotes trigonometrically-fitted formulae for the numerical solution of the Schrödinger equation , 2009, Appl. Math. Comput..

[31]  Xavier Raynaud,et al.  Convergence of a Finite Difference Scheme for the Camassa-Holm Equation , 2006, SIAM J. Numer. Anal..

[32]  Brynjulf Owren,et al.  Multi-symplectic integration of the Camassa-Holm equation , 2008, J. Comput. Phys..

[33]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[34]  T. Bridges Multi-symplectic structures and wave propagation , 1997, Mathematical Proceedings of the Cambridge Philosophical Society.

[35]  Theodore E. Simos High-order closed Newton-Cotes trigonometrically-fitted formulae for long-time integration of orbital problems , 2008, Comput. Phys. Commun..

[36]  Mark J. Ablowitz,et al.  Symplectic methods for the nonlinear Schro¨dinger equation , 1994 .

[37]  B. M. Fulk MATH , 1992 .

[38]  Bülent Karasözen,et al.  Symplectic and multi-symplectic methods for coupled nonlinear Schrödinger equations with periodic solutions , 2007, Comput. Phys. Commun..

[39]  Naoki Saito,et al.  Multiresolution representations using the autocorrelation functions of compactly supported wavelets , 1993, IEEE Trans. Signal Process..

[40]  Andrew G. Glen,et al.  APPL , 2001 .