A comparison of models for uncertainty analysis by the finite element method

[1]  Lawrence L. Kupper,et al.  Probability, statistics, and decision for civil engineers , 1970 .

[2]  Mircea Grigoriu,et al.  STOCHASTIC FINITE ELEMENT ANALYSIS OF SIMPLE BEAMS , 1983 .

[3]  Paul Bratley,et al.  A guide to simulation , 1983 .

[4]  Wilson H. Tang,et al.  Probability concepts in engineering planning and design , 1984 .

[5]  Wing Kam Liu,et al.  Random field finite elements , 1986 .

[6]  H. Trussell,et al.  Constructing membership functions using statistical data , 1986 .

[7]  Masanobu Shinozuka,et al.  Neumann Expansion for Stochastic Finite Element Analysis , 1988 .

[8]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[9]  M. Kleiber,et al.  Finite element analysis based on stochastic Hamilton variational principle , 1990 .

[10]  Masanobu Shinozuka,et al.  Simulation of Stochastic Fields by Statistical Preconditioning , 1990 .

[11]  Christian Soize A model and numerical method in the medium frequency range for vibroacoustic predictions using the theory of structural fuzzy , 1992 .

[12]  Tuan D. Pham,et al.  Fuzzy finite element analysis of a foundation on an elastic soil medium , 1993 .

[13]  Armando Miguel Awruch,et al.  On stochastic finite elements for structural analysis , 1994 .

[14]  Earl Cox,et al.  The fuzzy systems handbook , 1994 .

[15]  Lucien Duckstein,et al.  Fuzzy Rule-Based Modeling with Applications to Geophysical, Biological and Engineering Systems , 1995 .

[16]  Christian Soize,et al.  Stochastic linearization method with random parameters for SDOF nonlinear dynamical systems: Prediction and identification procedures , 1995 .

[17]  Christian Soize,et al.  Vibration damping in low-frequency range due to structural complexity. A model based on the theory of fuzzy structures and model parameters estimation , 1996 .

[18]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .