The mean flow field generated by a pitched blade turbine: Changes in the circulation pattern due to impeller geometry

The mean flow field in a tank stirred with a pitched blade turbine was measured using a two-component Laser Doppler Anemometer system (LDA). The effects of impeller clearances and impeller geometries (number of blades, blade angle and blade size) on the mean flow field have been studied. The primary pumping number, induced pumping number of the primary circulation loop and the induced pumping number of the secondary circulation loop, which often has been ignored, are reported. The flow patterns and circulation loops are more complex than those traditional ones, which vary with the geometries of the PTD and the clearances. On a mesure le champ d'ecoulement moyen dans un reservoir agite muni d'une turbine a pales inclinees a l'aide d'un anenometre laser Doppler bicomposantes. Les effets du degagement de la turbine par rapport aux parois et de la geometrie de la turbine (nombre, angle et dimension des pales) sur le champ d'ecoulement moyen ont ete etudies. Le nombre de pompage primaire, le nombre de pompage induit de la boucle de circulation primaire ainsi que le nombre de pompage induit de la boucle de circulation secondaire, qui sont souvent ignores, sont presentes ici. Les profils d'ecoulement et les boucles de circulation sont plus complexes que ceux des cas classiques, qui varient selon la geometrie de la turbine a pales inclinees (TPI) et les degagements par rapport aux parois.

[1]  J. Joshi,et al.  Critical impeller speed for solid suspension in mechanically agitated contactors , 1988 .

[2]  Jyeshtharaj B. Joshi,et al.  LIQUID PHASE MIXING IN MECHANICALLY AGITATED VESSELS , 1988 .

[3]  Carl M. Stoots,et al.  Mean velocity field relative to a Rushton turbine blade , 1995 .

[4]  Suzanne M. Kresta,et al.  The mean flow field produced by a 45° pitched blade turbine: Changes in the circulation pattern due to off bottom clearance , 1993 .

[5]  H. V. D. Akker,et al.  A Computational Study on Dispersing Gas in a Stirred Reactor , 1992 .

[6]  Vivek V. Ranade,et al.  FLOW GENERATED BY PITCHED BLADE TURBINES I: MEASUREMENTS USING LASER DOPPLER ANEMOMETER , 1989 .

[7]  Aniruddha B. Pandit,et al.  Mixing in mechanically agitated gas-liquid contactors, bubble columns and modified bubble columns , 1983 .

[8]  Ralph W. Pike,et al.  Fluid Dynamics and Flow Patterns in Stirred Tanks With a Turbine Impeller. , 1972 .

[9]  Ivan Fořt,et al.  Hydraulic characteristics of turbine impeller , 1982 .

[10]  Alvin W. Nienow,et al.  An LDA study of turbulent flow in a baffled vessel agitated by a pitched blade turbine , 1991 .

[11]  J. Villermaux,et al.  Basic chemical engineering research : where are we going ? , 1993 .

[12]  Jyeshtharaj B. Joshi,et al.  EFFECT OF IMPELLER DESIGN ON LIQUID PHASE MIXING IN MECHANICALLY AGITATED REACTORS , 1991 .

[13]  Vivek V. Ranade,et al.  FLOW GENERATED BY PITCHED BLADE TURBINES II: SIMULATION USING κ-ε MODEL , 1989 .

[14]  Jamshid M. Nouri,et al.  Flow characteristics of stirred reactors with newtonian and non‐newtonian fluids , 1990 .

[15]  Jyeshtharaj B. Joshi,et al.  POWER CONSUMPTION IN MECHANICALLY AGITATED CONTACTORS USING PITCHED BLADED TURBINE IMPELLERS , 1990 .

[16]  Aniruddha B. Pandit,et al.  Mechanically agitated gas-liquid reactors , 1982 .