Diverse interactions of retroviral Gag proteins with RNAs.

[1]  Frank Heinrich,et al.  HIV-1 Gag extension: conformational changes require simultaneous interaction with membrane and nucleic acid. , 2011, Journal of molecular biology.

[2]  Raul E. Cachau,et al.  On the Role of the SP1 Domain in HIV-1 Particle Assembly: a Molecular Switch? , 2011, Journal of Virology.

[3]  L. Xing,et al.  Coordinate roles of Gag and RNA helicase A in promoting the annealing of formula to HIV-1 RNA. , 2011, Journal of virology.

[4]  K. Musier-Forsyth,et al.  Matrix Domain Modulates HIV-1 Gag's Nucleic Acid Chaperone Activity via Inositol Phosphate Binding , 2010, Journal of Virology.

[5]  A. Rein Nucleic acid chaperone activity of retroviral Gag proteins , 2010, RNA biology.

[6]  K. Musier-Forsyth,et al.  Role of HIV-1 nucleocapsid protein in HIV-1 reverse transcription , 2010, RNA biology.

[7]  S. Woodson Taming free energy landscapes with RNA chaperones , 2010, RNA biology.

[8]  K. Weeks,et al.  Definition of a high-affinity Gag recognition structure mediating packaging of a retroviral RNA genome , 2010, Proceedings of the National Academy of Sciences.

[9]  A. Telesnitsky,et al.  Retroviral RNA Dimerization and Packaging: The What, How, When, Where, and Why , 2010, PLoS pathogens.

[10]  R. Gorelick,et al.  Fundamental differences between the nucleic acid chaperone activities of HIV-1 nucleocapsid protein and Gag or Gag-derived proteins: biological implications. , 2010, Virology.

[11]  Paul Ahlquist,et al.  Cytoplasmic Viral Replication Complexes , 2010, Cell Host & Microbe.

[12]  A. Telesnitsky,et al.  7SL RNA Is Retained in HIV-1 Minimal Virus-Like Particles as an S-Domain Fragment , 2010, Journal of Virology.

[13]  M. Bewley,et al.  Directionality of nucleocytoplasmic transport of the retroviral gag protein depends on sequential binding of karyopherins and viral RNA , 2010, Proceedings of the National Academy of Sciences.

[14]  M. Summers,et al.  An RNA structural switch regulates diploid genome packaging by Moloney murine leukemia virus. , 2010, Journal of molecular biology.

[15]  V. Chukkapalli,et al.  Opposing mechanisms involving RNA and lipids regulate HIV-1 Gag membrane binding through the highly basic region of the matrix domain , 2010, Proceedings of the National Academy of Sciences.

[16]  K. Weeks,et al.  Secondary Structure of the Mature Ex Virio Moloney Murine Leukemia Virus Genomic RNA Dimerization Domain , 2009, Journal of Virology.

[17]  K. Musier-Forsyth,et al.  C-terminal Domain Modulates the Nucleic Acid Chaperone Activity of Human T-cell Leukemia Virus Type 1 Nucleocapsid Protein via an Electrostatic Mechanism* , 2009, The Journal of Biological Chemistry.

[18]  E. Barklis,et al.  Analysis of Human Immunodeficiency Virus Type 1 Matrix Binding to Membranes and Nucleic Acids , 2009, Journal of Virology.

[19]  J. Briggs,et al.  Structure and assembly of immature HIV , 2009, Proceedings of the National Academy of Sciences.

[20]  L. Kleiman,et al.  Roles of Gag and NCp7 in facilitating tRNA(Lys)(3) Annealing to viral RNA in human immunodeficiency virus type 1. , 2009, Journal of virology.

[21]  L. Parent,et al.  Genetic Evidence for a Connection between Rous Sarcoma Virus Gag Nuclear Trafficking and Genomic RNA Packaging , 2009, Journal of Virology.

[22]  Wei-Shau Hu,et al.  HIV-1 RNA dimerization: It takes two to tango. , 2009, AIDS reviews.

[23]  Franck A. P. Vendeix,et al.  The structure of the human tRNALys3 anticodon bound to the HIV genome is stabilized by modified nucleosides and adjacent mismatch base pairs , 2009, Nucleic acids research.

[24]  Rachael M. Crist,et al.  Assembly Properties of Human Immunodeficiency Virus Type 1 Gag-Leucine Zipper Chimeras: Implications for Retrovirus Assembly , 2008, Journal of Virology.

[25]  K. Musier-Forsyth,et al.  Retroviral Nucleocapsid Proteins Display Nonequivalent Levels of Nucleic Acid Chaperone Activity , 2008, Journal of Virology.

[26]  L. Abrahamyan,et al.  Mapping of nucleocapsid residues important for HIV-1 genomic RNA dimerization and packaging. , 2008, Virology.

[27]  Morgan C. Giddings,et al.  High-Throughput SHAPE Analysis Reveals Structures in HIV-1 Genomic RNA Strongly Conserved across Distinct Biological States , 2008, PLoS biology.

[28]  B. Roques,et al.  The single-finger nucleocapsid protein of moloney murine leukemia virus binds and destabilizes the TAR sequences of HIV-1 but does not promote efficiently their annealing. , 2007, Biochemistry.

[29]  D. Ficheux,et al.  Structural requirements for nucleocapsid protein-mediated dimerization of avian leukosis virus RNA. , 2007, Journal of molecular biology.

[30]  R. Konrat,et al.  RNA Chaperones, RNA Annealers and RNA Helicases , 2007, RNA biology.

[31]  J. Davies Developmental biologists' choice of subjects approximates to a power law, with no evidence for the existence of a special group of 'model organisms' , 2007, BMC Developmental Biology.

[32]  Christopher L. Fillmore,et al.  Electron cryotomography of immature HIV‐1 virions reveals the structure of the CA and SP1 Gag shells , 2007, The EMBO journal.

[33]  S. Biswal,et al.  Selective and Nonselective Packaging of Cellular RNAs in Retrovirus Particles , 2007, Journal of Virology.

[34]  P. Clark,et al.  Interactions between HIV-1 Gag molecules in solution: an inositol phosphate-mediated switch. , 2007, Journal of molecular biology.

[35]  Joseph E Curtis,et al.  Conformation of the HIV-1 Gag protein in solution. , 2007, Journal of molecular biology.

[36]  M. Summers,et al.  Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[37]  A. Rein,et al.  Interactions of HIV-1 Gag with assembly cofactors. , 2006, Biochemistry.

[38]  Marc C. Johnson,et al.  Cryo-electron microscopy reveals conserved and divergent features of gag packing in immature particles of Rous sarcoma virus and human immunodeficiency virus. , 2006, Journal of molecular biology.

[39]  M. Mougel,et al.  The highly structured encapsidation signal of MuLV RNA is involved in the nuclear export of its unspliced RNA. , 2005, Journal of molecular biology.

[40]  E. Bertrand,et al.  The packaging signal of MLV is an integrated module that mediates intracellular transport of genomic RNAs. , 2005, Journal of molecular biology.

[41]  Marc C. Johnson,et al.  The Retroviral Capsid Domain Dictates Virion Size, Morphology, and Coassembly of Gag into Virus-Like Particles , 2005, Journal of Virology.

[42]  M. Summers,et al.  How retroviruses select their genomes , 2005, Nature Reviews Microbiology.

[43]  M. Wainberg,et al.  A HIV-1 minimal gag protein is superior to nucleocapsid at in vitro annealing and exhibits multimerization-induced inhibition of reverse transcription. , 2005, The Journal of biological chemistry.

[44]  K. Nagashima,et al.  Role of Murine Leukemia Virus Nucleocapsid Protein in Virus Assembly , 2004, Journal of Virology.

[45]  A. Rein,et al.  mRNA Molecules Containing Murine Leukemia Virus Packaging Signals Are Encapsidated as Dimers , 2004, Journal of Virology.

[46]  M. Summers,et al.  Structural basis for packaging the dimeric genome of Moloney murine leukaemia virus , 2004, Nature.

[47]  M. Wainberg,et al.  Is HIV-1 RNA dimerization a prerequisite for packaging? Yes, no, probably? , 2004, Retrovirology.

[48]  Peter Tompa,et al.  The role of structural disorder in the function of RNA and protein chaperones , 2004, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[49]  Roland Marquet,et al.  Dimerization of retroviral RNA genomes: an inseparable pair , 2004, Nature Reviews Microbiology.

[50]  L. Kleiman,et al.  The selective packaging and annealing of primer tRNALys3 in HIV-1. , 2004, Current HIV research.

[51]  V. Vogt,et al.  Nucleic Acid Binding-Induced Gag Dimerization in the Assembly of Rous Sarcoma Virus Particles In Vitro , 2004, Journal of Virology.

[52]  Huating Wang,et al.  Involvement of the Matrix and Nucleocapsid Domains of the Bovine Leukemia Virus Gag Polyprotein Precursor in Viral RNA Packaging , 2003, Journal of Virology.

[53]  D. Fabris,et al.  Direct mass spectrometric determination of the stoichiometry and binding affinity of the complexes between nucleocapsid protein and RNA stem-loop hairpins of the HIV-1 Psi-recognition element. , 2003, Biochemistry.

[54]  K. Nagashima,et al.  Elimination of Protease Activity Restores Efficient Virion Production to a Human Immunodeficiency Virus Type 1 Nucleocapsid Deletion Mutant , 2003, Journal of Virology.

[55]  A. E. Rosen,et al.  Efficient initiation of HIV-1 reverse transcription in vitro. Requirement for RNA sequences downstream of the primer binding site abrogated by nucleocapsid protein-dependent primer-template interactions. , 2003, The Journal of biological chemistry.

[56]  V. Vogt,et al.  Rous Sarcoma Virus Gag Protein-Oligonucleotide Interaction Suggests a Critical Role for Protein Dimer Formation in Assembly , 2002, Journal of Virology.

[57]  P. Borer,et al.  Affinities of packaging domain loops in HIV-1 RNA for the nucleocapsid protein. , 2002, Biochemistry.

[58]  E. Chertova,et al.  Human immunodeficiency virus type 1 preferentially encapsidates genomic RNAs that encode Pr55(Gag): functional linkage between translation and RNA packaging. , 2002, Virology.

[59]  H. Issaq,et al.  Modulation of HIV-like particle assembly in vitro by inositol phosphates , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[60]  A. Rein,et al.  RNA is a structural element in retrovirus particles , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[61]  T. Shioda,et al.  Duplication of the Primary Encapsidation and Dimer Linkage Region of Human Immunodeficiency Virus Type 1 RNA Results in the Appearance of Monomeric RNA in Virions , 2001, Journal of Virology.

[62]  Shan Cen,et al.  Roles of Pr55gag and NCp7 in tRNA3Lys Genomic Placement and the Initiation Step of Reverse Transcription in Human Immunodeficiency Virus Type 1 , 2000, Journal of Virology.

[63]  M. Summers,et al.  NMR structure of the HIV-1 nucleocapsid protein bound to stem-loop SL2 of the psi-RNA packaging signal. Implications for genome recognition. , 2000, Journal of molecular biology.

[64]  M. Linial,et al.  An MΨ-Containing Heterologous RNA, but Notenv mRNA, Is Efficiently Packaged into Avian Retroviral Particles , 1999, Journal of Virology.

[65]  J. Leis,et al.  Changes in Rous Sarcoma Virus RNA Secondary Structure near the Primer Binding Site upon tRNATrpPrimer Annealing , 1999, Journal of Virology.

[66]  C. Ehresmann,et al.  The Human Immunodeficiency Virus Type 1 Gag Polyprotein Has Nucleic Acid Chaperone Activity: Possible Role in Dimerization of Genomic RNA and Placement of tRNA on the Primer Binding Site , 1999, Journal of Virology.

[67]  J. Kaye,et al.  Human Immunodeficiency Virus Types 1 and 2 Differ in the Predominant Mechanism Used for Selection of Genomic RNA for Encapsidation , 1999, Journal of Virology.

[68]  A. Rein,et al.  In Vitro Assembly Properties of Human Immunodeficiency Virus Type 1 Gag Protein Lacking the p6 Domain , 1999, Journal of Virology.

[69]  P. Borer,et al.  STRUCTURE OF THE HIV-1 NUCLEOCAPSID PROTEIN BOUND TO THE SL3 PSI-RNA RECOGNITION ELEMENT, NMR, 25 STRUCTURES , 1998 .

[70]  E. Barklis,et al.  Analysis of the Assembly Function of the Human Immunodeficiency Virus Type 1 Gag Protein Nucleocapsid Domain , 1998, Journal of Virology.

[71]  P. Borer,et al.  Structure of the HIV-1 nucleocapsid protein bound to the SL3 psi-RNA recognition element. , 1998, Science.

[72]  M. Wainberg,et al.  Effect of mutations in the nucleocapsid protein (NCp7) upon Pr160(gag-pol) and tRNA(Lys) incorporation into human immunodeficiency virus type 1 , 1997, Journal of virology.

[73]  V. Vogt,et al.  Self-assembly in vitro of purified CA-NC proteins from Rous sarcoma virus and human immunodeficiency virus type 1 , 1995, Journal of virology.

[74]  S. Goff,et al.  5' regions of HIV-1 RNAs are not sufficient for encapsidation: implications for the HIV-1 packaging signal. , 1995, Virology.

[75]  W. Fu,et al.  Characterization of human immunodeficiency virus type 1 dimeric RNA from wild-type and protease-defective virions , 1994, Journal of virology.

[76]  W. Fu,et al.  Maturation of dimeric viral RNA of Moloney murine leukemia virus , 1993, Journal of virology.

[77]  V. Vogt,et al.  Properties of avian retrovirus particles defective in viral protease , 1990, Journal of virology.

[78]  L. Arthur,et al.  Noninfectious human immunodeficiency virus type 1 mutants deficient in genomic RNA , 1990, Journal of virology.

[79]  R. Young,et al.  Mutations of RNA and protein sequences involved in human immunodeficiency virus type 1 packaging result in production of noninfectious virus , 1990, Journal of virology.

[80]  R. Gorelick,et al.  Point mutants of Moloney murine leukemia virus that fail to package viral RNA: evidence for specific RNA recognition by a "zinc finger-like" protein sequence. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[81]  A. Miller,et al.  Identification of a signal in a murine retrovirus that is sufficient for packaging of nonretroviral RNA into virions , 1988, Journal of virology.

[82]  P. Spahr,et al.  Rous sarcoma virus nucleic acid-binding protein p12 is necessary for viral 70S RNA dimer formation and packaging , 1986, Journal of virology.

[83]  S. Goff,et al.  A deletion mutation in the 5' part of the pol gene of Moloney murine leukemia virus blocks proteolytic processing of the gag and pol polyproteins , 1985, Journal of virology.

[84]  L. Xing,et al.  Coordinate Roles of Gag and RNA Helicase A in Promoting the Annealing of tRNA3 Lys to HIV-1 RNA , 2010 .

[85]  K. Musier-Forsyth,et al.  Nucleic acid chaperone activity of HIV-1 nucleocapsid protein: critical role in reverse transcription and molecular mechanism. , 2005, Progress in nucleic acid research and molecular biology.

[86]  J. Darlix,et al.  The ubiquitous nature of RNA chaperone proteins. , 2002, Progress in nucleic acid research and molecular biology.

[87]  M. Wainberg,et al.  Roles of Pr55(gag) and NCp7 in tRNA(3)(Lys) genomic placement and the initiation step of reverse transcription in human immunodeficiency virus type 1. , 2000, Journal of virology.