Compensating for a multisinusoidal disturbance based on Youla–Kucera parametrization

We consider the problem of compensation for a multisinusoidal disturbance for a linear stationary system with a given nominal control law. We consider the general structure of a controller that lets one use arbitrary algorithms for identification of disturbance parameters satisfying certain assumptions. The proposed structure is based on the Youla–Kucera parametrization and lets one compensate for a disturbance while preserving nominal behavior of a control system with respect to the reference.

[1]  Romeo Ortega,et al.  A globally convergent frequency estimator , 1999, IEEE Trans. Autom. Control..

[2]  Alireza R. Bakhshai,et al.  An adaptive notch filter for frequency estimation of a periodic signal , 2004, IEEE Transactions on Automatic Control.

[3]  V. O. Nikiforov,et al.  Adaptive Non-linear Tracking with Complete Compensation of Unknown Disturbances , 1998, Eur. J. Control.

[4]  Ali Zolghadri,et al.  A Nonlinear Observer-Based Strategy for Aircraft Oscillatory Failure Detection: A380 Case Study , 2011, IEEE Transactions on Aerospace and Electronic Systems.

[5]  Ming Hou Estimation of Sinusoidal Frequencies and Amplitudes Using Adaptive Identifier and Observer , 2007, IEEE Transactions on Automatic Control.

[6]  Scott C. Douglas,et al.  Adaptive algorithms for the rejection of sinusoidal disturbances with unknown frequency , 1996, Autom..

[7]  Alexey A. Bobtsov,et al.  Adaptive filters cascade applied to a frequency identification improvement problem , 2016 .

[8]  Ming Hou Amplitude and frequency estimator of a sinusoid , 2005, IEEE Transactions on Automatic Control.

[9]  Thomas Parisini,et al.  Robust parametric estimation of biased sinusoidal signals: A parallel pre-filtering approach , 2014, 53rd IEEE Conference on Decision and Control.

[10]  Biqing Wu,et al.  A magnitude/phase-locked loop approach to parameter estimation of periodic signals , 2003, IEEE Trans. Autom. Control..

[11]  Artem Kremlev,et al.  Identification of Frequency of Biased Harmonic Signal , 2007, Eur. J. Control.

[12]  Lorenzo Marconi,et al.  Semi-global nonlinear output regulation with adaptive internal model , 2001, IEEE Trans. Autom. Control..

[13]  Giuseppe Fedele,et al.  A Frequency-Locked-Loop Filter for Biased Multi-Sinusoidal Estimation , 2014, IEEE Transactions on Signal Processing.

[14]  Brian D. O. Anderson,et al.  From Youla-Kucera to Identification, Adaptive and Nonlinear Control , 1998, Autom..

[15]  Bruce A. Francis,et al.  The internal model principle of control theory , 1976, Autom..

[16]  Delphine Bresch-Pietri,et al.  Adaptive trajectory tracking despite unknown input delay and plant parameters , 2009, Autom..

[17]  Phillip A. Regalia,et al.  An improved lattice-based adaptive IIR notch filter , 1991, IEEE Trans. Signal Process..

[18]  Ming Hou,et al.  Parameter Identification of Sinusoids , 2012, IEEE Transactions on Automatic Control.

[19]  Masayoshi Tomizuka,et al.  A Minimum Parameter Adaptive Approach for Rejecting Multiple Narrow-Band Disturbances With Application to Hard Disk Drives , 2012, IEEE Transactions on Control Systems Technology.

[20]  Henk Nijmeijer,et al.  A Globally K-Exponentially Stable Nonlinear Observer for the Wave Encounter Frequency , 2013 .

[21]  Ioan Doré Landau,et al.  Adaptive regulation—Rejection of unknown multiple narrow band disturbances (a review on algorithms and applications) , 2011 .

[22]  Leonid B. Freidovich,et al.  Adaptive compensation of disturbances formed as sums of sinusoidal signals with application to an active vibration control benchmark , 2013, Eur. J. Control.

[23]  Riccardo Marino,et al.  Global estimation of n unknown frequencies , 2002, IEEE Trans. Autom. Control..

[24]  Evgeny I. Veremey,et al.  Optimal filtering correction for marine dynamical positioning control system , 2016 .

[25]  X. Xia Global frequency estimation using adaptive identifiers , 2002, IEEE Trans. Autom. Control..

[26]  Giuseppe Fedele,et al.  Non Adaptive Second-Order Generalized Integrator for Identification of a Biased Sinusoidal Signal , 2012, IEEE Transactions on Automatic Control.

[27]  Dante C. Youla,et al.  Modern Wiener--Hopf design of optimal controllers Part I: The single-input-output case , 1976 .

[28]  A. A. Bobtsov,et al.  Identification of frequency of a shifted sinusoidal signal , 2008 .

[29]  Alexey A. Bobtsov,et al.  Adaptive observer of an unknown sinusoidal output disturbance for linear plants , 2009 .