A simple finite difference method for time-dependent, variable coefficient Stokes flow on irregular domains

We present a simple and efficient variational finite difference method for simulating time-dependent Stokes flow in the presence of irregular free surfaces and moving solid boundaries. The method uses an embedded boundary approach on staggered Cartesian grids, avoiding the need for expensive remeshing operations, and can be applied to flows in both two and three dimensions. It uses fully implicit backwards Euler integration to provide stability and supports spatially varying density and viscosity, while requiring the solution of just a single sparse, symmetric positive-definite linear system per time step. By expressing the problem in a variational form, challenging irregular domains are supported implicitly through the use of natural boundary conditions. In practice, the discretization requires only centred finite difference stencils and per-cell volume fractions, and is straightforward to implement. The variational form further permits generalizations to coupling other mechanics, all the while reducing to a sparse symmetric positive definite matrix. We demonstrate consistent first order convergence of velocity in L1 and Linf norms on a range of analytical test cases in two dimensions. Furthermore, we apply our method as part of a simple Navier-Stokes solver to illustrate that it can reproduce the characteristic jet buckling phenomenon of Newtonian liquids at moderate viscosities, in both two and three dimensions.

[1]  Ronald Fedkiw,et al.  Two-way coupling of fluids to rigid and deformable solids and shells , 2008, ACM Trans. Graph..

[2]  Ronald Fedkiw,et al.  A symmetric positive definite formulation for monolithic fluid structure interaction , 2011, J. Comput. Phys..

[3]  Nafees Bin Zafar,et al.  Cartesian grid fluid simulation with irregular boundary voxels , 2005, SIGGRAPH '05.

[4]  C. W. Hirt,et al.  Free-surface stress conditions for incompressible-flow calculations☆ , 1968 .

[5]  Robert Bridson,et al.  Animating developable surfaces using nonconforming elements , 2008, SIGGRAPH 2008.

[6]  Frédéric Gibou,et al.  An efficient fluid-solid coupling algorithm for single-phase flows , 2009, J. Comput. Phys..

[7]  Manuel Laso,et al.  Numerical simulation of 3D viscoelastic flows with free surfaces , 2006, J. Comput. Phys..

[8]  S. Idelsohn,et al.  Objectivity tests for Navier–Stokes simulations: The revealing of non-physical solutions produced by Laplace formulations , 2008 .

[9]  M. F. Tomé,et al.  Numerical simulation of viscous flow: Buckling of planar jets , 1999 .

[10]  Jie Shen,et al.  An overview of projection methods for incompressible flows , 2006 .

[11]  V. G. Ferreira,et al.  A numerical method for solving three-dimensional generalized Newtonian free surface flows , 2004 .

[12]  J. W. Purvis,et al.  Prediction of critical Mach number for store configurations , 1979 .

[13]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[14]  Robert Bridson,et al.  Accurate viscous free surfaces for buckling, coiling, and rotating liquids , 2008, SCA '08.

[15]  Li-Tien Cheng,et al.  A second-order-accurate symmetric discretization of the Poisson equation on irregular domains , 2002 .

[16]  Heinz Pitsch,et al.  An accurate conservative level set/ghost fluid method for simulating turbulent atomization , 2008, J. Comput. Phys..

[17]  S. Osher,et al.  A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .

[18]  R. Fedkiw,et al.  USING THE PARTICLE LEVEL SET METHOD AND A SECOND ORDER ACCURATE PRESSURE BOUNDARY CONDITION FOR FREE SURFACE FLOWS , 2003 .

[19]  J. O. Cruickshank Low-Reynolds-number instabilities in stagnating jet flows , 1988, Journal of Fluid Mechanics.

[20]  Frédéric Gibou,et al.  Efficient symmetric discretization for the Poisson, heat and Stefan-type problems with Robin boundary conditions , 2010, J. Comput. Phys..

[21]  M. Manzari,et al.  An incompressible SPH method for simulation of unsteady viscoelastic free-surface flows , 2007 .

[22]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[23]  Mark Sussman,et al.  An Improved Sharp Interface Method for Viscoelastic and Viscous Two-Phase Flows , 2008, J. Sci. Comput..

[24]  Frédéric Gibou,et al.  Geometric integration over irregular domains with application to level-set methods , 2007, J. Comput. Phys..

[25]  Justin W. L. Wan,et al.  A Boundary Condition-Capturing Multigrid Approach to Irregular Boundary Problems , 2004, SIAM J. Sci. Comput..

[26]  Shan Zhao,et al.  High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources , 2006, J. Comput. Phys..

[27]  Eugenio Oñate,et al.  The violation of objectivity in Laplace formulations of the Navier–Stokes equations , 2007 .

[28]  J. Li,et al.  Numerical simulation of breakup of a viscous drop in simple shear flow through a volume-of-fluid method , 2000 .

[29]  P. Colella,et al.  A Cartesian Grid Embedded Boundary Method for Poisson's Equation on Irregular Domains , 1998 .

[30]  Michael A. Saunders,et al.  LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.

[31]  Ronald Fedkiw,et al.  A Boundary Condition Capturing Method for Multiphase Incompressible Flow , 2000, J. Sci. Comput..

[32]  José Alberto Cuminato,et al.  An implicit technique for solving 3D low Reynolds number moving free surface flows , 2008, J. Comput. Phys..

[33]  Frank Losasso,et al.  A fast and accurate semi-Lagrangian particle level set method , 2005 .

[34]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[35]  William E. Pracht,et al.  A numerical method for calculating transient creep flows , 1971 .

[36]  Eftychios Sifakis,et al.  A Second Order Virtual Node Method for Poisson Interface Problems on Irregular Domains , 2009 .

[37]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[38]  Robert Bridson,et al.  A fast variational framework for accurate solid-fluid coupling , 2007, ACM Trans. Graph..

[39]  Ming-Chih Lai,et al.  A note on pressure accuracy in immersed boundary method for Stokes flow , 2011, J. Comput. Phys..

[40]  M. F. Tomé,et al.  GENSMAC: a computational marker and cell method for free surface flows in general domains , 1994 .

[41]  H. Elman Multigrid and Krylov subspace methods for the discrete Stokes equations , 1994 .

[42]  M. Deville,et al.  Unsteady finite volume simulation of Oldroyd-B fluid through a three-dimensional planar contraction , 1997 .

[43]  Greg Turk,et al.  Melting and flowing , 2002, SCA '02.

[44]  C. W. Hirt,et al.  Improved free surface boundary conditions for numerical incompressible-flow calculations , 1971 .

[45]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[46]  John R. Whiteman,et al.  Numerical modelling of viscoelastic liquids using a finite-volume method , 1992 .

[47]  Randall J. LeVeque,et al.  Immersed Interface Methods for Stokes Flow with Elastic Boundaries or Surface Tension , 1997, SIAM J. Sci. Comput..

[48]  J. O. Cruickshank,et al.  Viscous fluid buckling of plane and axisymmetric jets , 1981, Journal of Fluid Mechanics.

[49]  Henrik Fält,et al.  Fluids with extreme viscosity , 2003, SIGGRAPH '03.

[50]  Mark Sussman,et al.  Improvements for calculating two-phase bubble and drop motion using an adaptive sharp interface method. , 2007 .

[51]  Robert L. Street,et al.  A computer study of finite-amplitude water waves , 1970 .