Multistatic SAR image reconstruction based on an elliptical-geometry radon transform

We propose a geometry and inversion methods for a multistatic, downlooking SAR mode using simple antennas. The resulting generalized Radon transform takes line integrals over ellipses of changing aspect ratio. We apply the method of approximate inverse to the inversion of this transform and show the results of the numerical inversion.

[1]  A. Cormack Representation of a Function by Its Line Integrals, with Some Radiological Applications , 1963 .

[2]  Nicholas J. Redding SAR image formation via inversion of Radon transforms , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[3]  Riccardo Lanari,et al.  Synthetic Aperture Radar Processing , 1999 .

[4]  Martin L. Brady,et al.  A Fast Discrete Approximation Algorithm for the Radon Transform , 1998, SIAM J. Comput..

[5]  W. Madych Radon’s inversion formulas , 2004 .

[6]  Editors , 1986, Brain Research Bulletin.

[7]  L. Zalcman Offbeat Integral Geometry , 1980 .

[8]  Eric Todd Quinto,et al.  The Radon Transform, Inverse Problems, and Tomography , 2006 .

[9]  S. Helgason The Radon Transform , 1980 .

[10]  L. Andersson On the determination of a function from spherical averages , 1988 .

[11]  Andrew S. Milman The Hyperbolic Geometry of SAR Imaging , 2000 .

[12]  Mehrdad Soumekh,et al.  Synthetic Aperture Radar Signal Processing with MATLAB Algorithms , 1999 .

[13]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[14]  L. Ehrenpreis The Universality of the Radon Transform , 2003 .

[15]  Nicholas J. Redding,et al.  Inverting the spherical Radon transform for 3D SAR image formation , 2003, 2003 Proceedings of the International Conference on Radar (IEEE Cat. No.03EX695).

[16]  V. Vladimirov Methods of the theory of generalized functions , 1966 .

[17]  Nicholas J. Redding,et al.  Inverting the Circular Radon Transform , 2001 .

[18]  Sune R. J. Axelsson,et al.  Beam characteristics of three-dimensional SAR in curved or random paths , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[19]  A. Faridani Mathematical Problems in Computed Tomography , 2007 .

[20]  D. Munson,et al.  A tomographic formulation of spotlight-mode synthetic aperture radar , 1983, Proceedings of the IEEE.

[21]  Stephen J. Norton,et al.  Reconstruction of a reflectivity field from line integrals over circular paths , 1980 .

[22]  Robert O. Harger,et al.  Synthetic aperture radar systems : theory and design , 1970 .

[23]  R. Bracewell Fourier Analysis and Imaging , 2004 .

[24]  Thomas Schuster,et al.  The Approximate Inverse in Action with an Application to Computerized Tomography , 2000, SIAM J. Numer. Anal..

[25]  Stephen J. Norton,et al.  Reconstruction of a two‐dimensional reflecting medium over a circular domain: Exact solution , 1980 .

[26]  Robert S. Strichartz RADON INVERSION-VARIATIONS ON A THEME , 1982 .

[27]  A. Milman SAR imaging by ?? migration , 1993 .

[28]  A. Cormack,et al.  The Radon transform on a family of curves in the plane. II , 1981 .