Design of a class of multirate systems using a maximum relative ℓ2-error criterion

A criterion for designing the class of multirate systems for rate changing is presented. This criterion arises from a model-matching perspective with maximum relative /spl Lscr//sup 2/-error over a general class of inputs and is a natural extension of the standard Chebyshev method for filter design. Using multirate and convex analysis techniques, the criterion is shown to lead to a convex matrix-valued-function approximation problem. An algorithm using convex optimization is proposed to solve the problem. An example illustrates the use of the algorithm and effectiveness over standard filter-design techniques.

[1]  A. Zayed Advances in Shannon's Sampling Theory , 1993 .

[2]  Bernard Friedland,et al.  Sampled-data control systems containing periodically varying members , 1960 .

[3]  Jelena Kovacevic,et al.  Perfect reconstruction filter banks with rational sampling rate changes , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[4]  Chyi H. Lu,et al.  Optimal design of multirate digital filters with application to interpolation , 1979 .

[5]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[6]  K. Zietak On the characterization of the extremal points of the unit sphere of matrices , 1988 .

[7]  T. Claasen,et al.  On stationary linear time-varying systems , 1982 .

[8]  Thomas W. Parks,et al.  Error criteria for filter design , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.

[9]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[10]  Michael L. Overton,et al.  Large-Scale Optimization of Eigenvalues , 1990, SIAM J. Optim..

[11]  Martin Vetterli,et al.  A theory of multirate filter banks , 1987, IEEE Trans. Acoust. Speech Signal Process..

[12]  M. Overton On minimizing the maximum eigenvalue of a symmetric matrix , 1988 .

[13]  Keh-Shew Lu,et al.  DIGITAL FILTER DESIGN , 1973 .

[14]  S. Biyiksiz,et al.  Multirate digital signal processing , 1985, Proceedings of the IEEE.

[15]  Bassam Bamieh,et al.  A general framework for linear periodic systems with applications to H/sup infinity / sampled-data control , 1992 .

[16]  Thomas W. Parks,et al.  New results in the design of digital interpolators" ieee trans , 1975 .

[17]  Bede Liu,et al.  Aliasing error in the design of multirate filters , 1978 .

[18]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[19]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[20]  Tongwen Chen,et al.  Design of multirate filter banks by /spl Hscr//sub /spl infin// optimization , 1995 .

[21]  Thomas W. Parks,et al.  Linear periodic systems and multirate filter design , 1994, IEEE Trans. Signal Process..

[22]  Jochem Zowe,et al.  A Version of the Bundle Idea for Minimizing a Nonsmooth Function: Conceptual Idea, Convergence Analysis, Numerical Results , 1992, SIAM J. Optim..

[23]  R.G. Shenoy Analysis of multirate components and application to multirate filter design , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.

[24]  A. Aldroubi,et al.  Sampling procedures in function spaces and asymptotic equivalence with shannon's sampling theory , 1994 .

[25]  C. Barnes,et al.  Multirate recursive digital filters--A general approach and block structures , 1983 .

[26]  D. Whittaker,et al.  A Course in Functional Analysis , 1991, The Mathematical Gazette.

[27]  C. Loeffler,et al.  Optimal design of periodically time-varying and multirate digital filters , 1984 .

[28]  C. Sidney Burrus,et al.  A unified analysis of multirate and periodically time-varying digital filters , 1975 .

[29]  Peter J. W. Rayner,et al.  Design methods for periodically time varying digital filters , 1988, IEEE Trans. Acoust. Speech Signal Process..

[30]  M. Fan,et al.  On minimizing the largest eigenvalue of a symmetric matrix , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.