Designer Matter: A perspective

a b s t r a c t The surge of modern techniques to fabricate structured materials paired with our ever deeper understanding of complex forms of matter present us with the opportunity to make and study dramatically new forms of designed materials and structures. This movement is being fueled by recent and rapid developments in a variety of fields, including soft matter, materials science, computer assisted design and digital fabrication. Here, we present an overview of these recent trends based on a multidisciplinary meeting on Designer Matter that we organized June 22nd–June 24th, 2015, at AMOLF, Amsterdam.

[1]  Skylar Tibbits,et al.  The programmable world. , 2014, Scientific American.

[2]  Xuanhe Zhao,et al.  Designing extremely resilient and tough hydrogels via delayed dissipation , 2014 .

[3]  David A. Weitz,et al.  Surface roughness directed self-assembly of patchy particles into colloidal micelles , 2012, Proceedings of the National Academy of Sciences.

[4]  Francesco Zerbetto,et al.  Synthetic molecular motors and mechanical machines. , 2007, Angewandte Chemie.

[5]  Hon Fai Chan,et al.  3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures , 2015, Advanced materials.

[6]  R. Fleury,et al.  Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice , 2015, Nature Communications.

[7]  R. Lakes Foam Structures with a Negative Poisson's Ratio , 1987, Science.

[8]  Alok Sutradhar,et al.  Topological optimization for designing patient-specific large craniofacial segmental bone replacements , 2010, Proceedings of the National Academy of Sciences.

[9]  Skylar Tibbits,et al.  4D Printing: Multi‐Material Shape Change , 2014 .

[10]  Jongmin Shim,et al.  Buckling-induced encapsulation of structured elastic shells under pressure , 2012, Proceedings of the National Academy of Sciences.

[11]  K. Bertoldi,et al.  Pattern transformation triggered by deformation. , 2007, Physical review letters.

[12]  Marc Z. Miskin,et al.  Adapting granular materials through artificial evolution. , 2013, Nature materials.

[13]  Michael P Brenner,et al.  Self-replicating colloidal clusters , 2014, Proceedings of the National Academy of Sciences.

[14]  Markus J Buehler,et al.  Deformation and failure of protein materials in physiologically extreme conditions and disease. , 2009, Nature materials.

[15]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[16]  Skylar Tibbits,et al.  Design to Self-Assembly , 2012 .

[17]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[18]  Zhigang Suo,et al.  A theory of constrained swelling of a pH-sensitive hydrogel†‡ , 2010 .

[19]  Vinothan N Manoharan,et al.  Dense Packing and Symmetry in Small Clusters of Microspheres , 2003, Science.

[20]  Gus L. W. Hart,et al.  Evolutionary approach for determining first-principles hamiltonians , 2005, Nature materials.

[21]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[22]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[23]  Nikolaus Correll,et al.  Materials that couple sensing, actuation, computation, and communication , 2015, Science.

[24]  B. Chen,et al.  Origami multistability: from single vertices to metasheets. , 2014, Physical review letters.

[25]  R. Fleury,et al.  Sound Isolation and Giant Linear Nonreciprocity in a Compact Acoustic Circulator , 2014, Science.

[26]  Fritz Vollrath,et al.  Biopolymers: Shape memory in spider draglines , 2006, Nature.

[27]  James J. S. Norton,et al.  Soft, curved electrode systems capable of integration on the auricle as a persistent brain–computer interface , 2015, Proceedings of the National Academy of Sciences.

[28]  Thomas C. Hull,et al.  Using origami design principles to fold reprogrammable mechanical metamaterials , 2014, Science.

[29]  Scott R White,et al.  Biomimetic Self-Healing. , 2015, Angewandte Chemie.

[30]  Chase P. Broedersz,et al.  Modeling semiflexible polymer networks , 2014, 1404.4332.

[31]  Zewen Liu,et al.  Self-folding graphene-polymer bilayers , 2015 .

[32]  H. Stone,et al.  Buckling of dielectric elastomeric plates for soft, electrically active microfluidic pumps. , 2014, Soft matter.

[33]  Siegfried Schmauder,et al.  Comput. Mater. Sci. , 1998 .

[34]  LipsonHod,et al.  Challenges and Opportunities for Design, Simulation, and Fabrication of Soft Robots , 2014 .

[35]  S. Wereley,et al.  Soft Matter , 2014 .

[36]  Derek E. Moulton,et al.  Dynamics of snapping beams and jumping poppers , 2013, 1310.3703.

[37]  Evin Gultepe,et al.  Self-folding devices and materials for biomedical applications. , 2012, Trends in biotechnology.

[38]  J. Pendry,et al.  Three-Dimensional Invisibility Cloak at Optical Wavelengths , 2010, Science.

[39]  M. Bendsøe,et al.  Topology Optimization: "Theory, Methods, And Applications" , 2011 .

[40]  M. Jamal,et al.  Self-Folding Single Cell Grippers , 2014, Nano letters.

[41]  Sanat S Bhole,et al.  Soft Microfluidic Assemblies of Sensors, Circuits, and Radios for the Skin , 2014, Science.

[42]  Andrew G. Glen,et al.  APPL , 2001 .

[43]  H. Jaeger Celebrating Soft Matter's 10th Anniversary: toward jamming by design. , 2015, Soft matter.

[44]  Rui Xiao,et al.  Solvent-driven temperature memory and multiple shape memory effects. , 2015, Soft matter.

[45]  Anubhav Jain,et al.  A high-throughput infrastructure for density functional theory calculations , 2011 .

[46]  M. Wegener,et al.  Direct laser writing of three-dimensional photonic-crystal templates for telecommunications , 2004, Nature materials.

[47]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[48]  Achim Menges,et al.  Aggregate Structures: Material and Machine Computation of Designed Granular Substances , 2012 .

[49]  Martin L. Dunn,et al.  Digital manufacture of shape changing components , 2015 .

[50]  Xuanhe Zhao,et al.  Predicting fracture energies and crack-tip fields of soft tough materials , 2015, 1506.04271.

[51]  Santhosh Ragan,et al.  Soft-I-Robot , 2012 .

[52]  M. van Hecke,et al.  Programmable mechanical metamaterials. , 2014, Physical review letters.

[53]  Jonathan T. Pham,et al.  Highly Stretchable Nanoparticle Helices Through Geometric Asymmetry and Surface Forces , 2013, Advanced materials.

[54]  Andrea J Liu,et al.  The Principle of Independent Bond-Level Response: Tuning by Pruning to Exploit Disorder for Global Behavior. , 2015, Physical review letters.

[55]  P. Reis,et al.  Soft Actuation of Structured Cylinders through Auxetic Behavior , 2015 .

[56]  T. Dupont,et al.  Capillary flow as the cause of ring stains from dried liquid drops , 1997, Nature.

[57]  Z. Suo,et al.  Highly stretchable and tough hydrogels , 2012, Nature.

[58]  Katia Bertoldi,et al.  Discontinuous Buckling of Wide Beams and Metabeams. , 2014, Physical review letters.

[59]  R. Fernandes,et al.  Self-folding polymeric containers for encapsulation and delivery of drugs. , 2012, Advanced drug delivery reviews.

[60]  Glaucio H. Paulino,et al.  Topology optimization for braced frames: Combining continuum and beam/column elements , 2012 .

[61]  Ha Uk Chung,et al.  Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling , 2015, Science.

[62]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[63]  Jonathan T. Pham,et al.  Macroscopic Nanoparticle Ribbons and Fabrics , 2013, Advanced materials.

[64]  Marco Buongiorno Nardelli,et al.  The high-throughput highway to computational materials design. , 2013, Nature materials.

[65]  N. Anscombe Direct laser writing , 2010 .

[66]  Yonggang Huang,et al.  Materials and Mechanics for Stretchable Electronics , 2010, Science.

[67]  H EwoldtRandy,et al.  Extremely Soft: Design with Rheologically Complex Fluids , 2014 .

[68]  L. Mahadevan,et al.  Physical Limits and Design Principles for Plant and Fungal Movements , 2005, Science.

[69]  L. Mahadevan,et al.  How the Venus flytrap snaps , 2005, Nature.

[70]  K. Bertoldi,et al.  Negative Poisson's Ratio Behavior Induced by an Elastic Instability , 2010, Advanced materials.

[71]  Martin Wegener,et al.  Metamaterials beyond electromagnetism , 2013, Reports on progress in physics. Physical Society.

[72]  Avni Jain,et al.  Inverse methods for material design , 2014, 1405.4060.

[73]  Jan Knippers,et al.  Advances in Architectural Geometry 2014 , 2014 .