Toward enhancing the autonomy of a telepresence mobile robot for remote home care assistance

Abstract In health care, a telepresence robot could be used to have a clinician or a caregiver assist seniors in their homes, without having to travel to these locations. However, the usability of these platforms for such applications requires that they can navigate and interact with a certain level of autonomy. For instance, robots should be able to go to their charging station in case of low energy level or telecommunication failure. The remote operator could be assisted by the robot’s capabilities to navigate safely at home and to follow and track people with whom to interact. This requires the integration of autonomous decision-making capabilities on a platform equipped with appropriate sensing and action modalities, which are validated out in the laboratory and in real homes. To document and study these translational issues, this article presents such integration on a Beam telepresence platform using three open-source libraries for integrated robot control architecture, autonomous navigation and sound processing, developed with real-time, limited processing and robustness requirements, so that they can work in real-life settings. Validation of the resulting platform, named SAM, is presented based on the trials carried out in 10 homes. Observations made provide guidance on what to improve and will help identify interaction scenarios for the upcoming usability studies with seniors, clinicians and caregivers.