Probabilistic Reasoning at Optimum Entropy with the MEcore System

Augmenting probabilities to conditional logic yields an expressive mechanism for representing uncertainty. The principle of optimum entropy allows one to reason in probabilistic logic in an information-theoretic optimal way by completing the given information as unbiasedly as possible. In this paper, we introduce the MEcore system that realises the core functionalities for an intelligent agent reasoning at optimum entropy and that provides powerful mechanisms for belief management operations like revision, update, diagnosis, or hypothetical what-if-analysis.

[1]  Gabriele Kern-Isberner,et al.  Linking Iterated Belief Change Operations to Nonmonotonic Reasoning , 2008, KR.

[2]  Gabriele Kern-Isberner,et al.  Conditionals in Nonmonotonic Reasoning and Belief Revision , 2001, Lecture Notes in Computer Science.

[3]  Jeff B. Paris,et al.  In defense of the maximum entropy inference process , 1997, Int. J. Approx. Reason..

[4]  Gabriele Kern-Isberner,et al.  Characterizing the Principle of Minimum Cross-Entropy Within a Conditional-Logical Framework , 1998, Artif. Intell..

[5]  Peter Gärdenfors,et al.  On the logic of theory change: Partial meet contraction and revision functions , 1985, Journal of Symbolic Logic.

[6]  Didier Dubois,et al.  Focusing vs. Belief Revision: A Fundamental Distinction When Dealing with Generic Knowledge , 1997, ECSQARU-FAPR.

[7]  Jeff B. Paris,et al.  A method for updating that justifies minimum cross entropy , 1992, Int. J. Approx. Reason..

[8]  Wilhelm Rödder,et al.  Features of the Expert-System-Shell SPIRIT , 2006, Log. J. IGPL.

[9]  John E. Shore,et al.  Relative Entropy, Probabilistic Inference, and AI , 1985, UAI.

[10]  Judea Pearl,et al.  On the Logic of Iterated Belief Revision , 1994, Artif. Intell..

[11]  P G rdenfors,et al.  Knowledge in flux: modeling the dynamics of epistemic states , 1988 .

[12]  I. Csiszár $I$-Divergence Geometry of Probability Distributions and Minimization Problems , 1975 .

[13]  Hirofumi Katsuno,et al.  On the Difference between Updating a Knowledge Base and Revising It , 1991, KR.

[14]  Yee Whye Teh,et al.  On Improving the Efficiency of the Iterative Proportional Fitting Procedure , 2003, AISTATS.