Properties of atoms in molecules: Dipole moments and transferability of properties

This paper uses the theory of atoms in molecules to investigate the origin of molecular dipole moments. The dipole moment is given by a sum over the net charge and first moment of every atom in a molecule. The first term leads to a charge transfer contribution μc, the second to an atomic polarization contribution μa. It is shown that both terms are, in general, of equal importance in determining both the static molecular dipole moment and the moment induced by a nuclear displacement. Models which imploy only point charges and corresponding bond moments which follow rigidly the nuclear framework, i.e., models which approximate μc and ignore μa, are shown to lead to results that are incompatible with the changes that are found to occur in a molecular charge distribution during a nuclear vibration. The dipole moment is shown to be another group property that is transferable between molecules in the normal hydrocarbons, This property, along with the net charge, the energy, the correlation energy (expressed as...

[1]  R. Bader,et al.  Partitioning and characterization of molecular charge distributions , 1971 .

[2]  K. N. Wong,et al.  Azines: vibrational force field and intensities for pyridine , 1984 .

[3]  W. H. Henneker,et al.  Molecular Charge Distributions and Chemical Binding , 1967 .

[4]  R. Bader,et al.  Quantum topology of molecular charge distributions. III. The mechanics of an atom in a molecule , 1980 .

[5]  R. J. Myers,et al.  Microwave Spectrum, Structure, and Dipole Moment of Cyclopropene , 1959 .

[6]  David R. Lide,et al.  Microwave Spectrum, Structure, and Dipole Moment of Propane , 1960 .

[7]  O. A. Osipov,et al.  Dipole moments in organic chemistry , 1970 .

[8]  T. Slee Correspondence between simple orbital concepts and molecular electron distributions. , 1986, Journal of the American Chemical Society.

[9]  Kenneth B. Wiberg,et al.  Group equivalents for converting ab initio energies to enthalpies of formation , 1984 .

[10]  G. Zerbi,et al.  Intramolecular electrical and dynamical interactions in formaldehyde: A discussion based on infrared intensity data , 1985 .

[11]  C. Coulson,et al.  I. The properties of certain strained hydrocarbons , 1949 .

[12]  M. De Handbuch der Physik , 1957 .

[13]  W. H. Henneker,et al.  The Ionic Bond , 1965 .

[14]  R. Bader Properties of atoms and bonds in carbocations , 1986 .

[15]  R. Bader,et al.  Towards the development of the quantum mechanics of a subspace , 1975 .

[16]  R. Bader,et al.  Virial Field Relationship for Molecular Charge Distributions and the Spatial Partitioning of Molecular Properties , 1972 .

[17]  Kenneth B. Wiberg,et al.  Charge redistribution in the molecular vibrations of acetylene, ethylene, ethane, methane, silane and the ammonium ion. Signs of the M-H bond moments , 1984 .

[18]  Frank Weinhold,et al.  Some remarks on the C–H bond dipole moment , 1986 .

[19]  Hyunyong Kim,et al.  Microwave Spectrum and Dipole Moment of Cyclobutene , 1965 .

[20]  V. A. Walters,et al.  Infrared intensities: cyclohexane. A molecular force field and dipole moment derivatives , 1985 .

[21]  G. Zerbi,et al.  Molecular point charges as derived from infrared intensities and from ab initio calculations , 1986 .

[22]  R. Bader,et al.  Atomic properties and the reactivity of carbenes , 1986 .

[23]  R. Bader,et al.  A topological theory of molecular structure , 1981 .

[24]  N. A. Kuebler,et al.  Optical Spectra of Small Rings. II. The Unsaturated Three‐Membered Rings , 1969 .

[25]  Enrico Clementi,et al.  Study of the electronic structure of molecules. XXI. Correlation energy corrections as a functional of the Hartree‐Fock density and its application to the hydrides of the second row atoms , 1974 .

[26]  R. Bader Reply to Comments of Li and Parr on Bader’s definition of an atom , 1986 .

[27]  J. C. Decius,et al.  Charge and charge flux in vibrating tetrahedral molecules , 1980 .

[28]  J. Wendoloski,et al.  The electrical nature of CH bonds and its relationship to infrared intensities , 1981 .

[29]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[30]  H. Nakatsuji Common nature of the electron cloud of a system undergoing change in nuclear configuration , 1974 .

[31]  Robert S. Mulliken,et al.  Comparison of Two Atomic Charge Definitions, as Applied to the Hydrogen Fluoride Molecule , 1971 .

[32]  R. Bader,et al.  Quantum Theory of Atoms in Molecules–Dalton Revisited , 1981 .

[33]  Frank Weinhold,et al.  Natural hybrid orbitals , 1980 .

[34]  J. L. Franklin Prediction of Heat and Free Energies of Organic Compounds , 1949 .

[35]  C. Coulson The dipole moment of the C—H bond , 1942 .

[36]  Hanno Essén,et al.  The characterization of atomic interactions , 1984 .

[37]  D. Langreth,et al.  A Spin Dependent Version of the Langreth-Mehl Exchange-Correlation Functional , 1985 .

[38]  R. Bader,et al.  Theoretical analysis of hydrocarbon properties. 2. Additivity of group properties and the origin of strain energy , 1987 .

[39]  Y. Marcus Introduction to liquid state chemistry , 1977 .

[40]  R. Bader,et al.  Relaxation of the Molecular Charge Distribution and the Vibrational Force Constant , 1968 .

[41]  G. Pilcher,et al.  Measurements of heats of combustion by flame calorimetry. Part 8.—Methane, ethane, propane, n-butane and 2-methylpropane , 1972 .

[42]  P. Jona,et al.  Interpretation of infrared intensities of ethylene by parametric methods , 1981 .

[43]  R. L. Mills,et al.  alpha-gamma Transition in Solid Nitrogen and Carbon Monoxide at High Pressure , 1971 .

[44]  A. Bondi van der Waals Volumes and Radii , 1964 .

[45]  Michael J. Frisch,et al.  Contribution of triple substitutions to the electron correlation energy in fourth order perturbation theory , 1980 .

[46]  Samuel Glasstone,et al.  Textbook of physical chemistry , 1941 .