Highly ordered TiO2 nanotube arrays embedded with g-C3N4 nanorods for enhanced photocatalytic activity

[1]  J. Crittenden,et al.  The individual and Co-exposure degradation of benzophenone derivatives by UV/H2O2 and UV/PDS in different water matrices. , 2019, Water research.

[2]  Xingwen Yu,et al.  Fast and efficient removal of As(III) from water by CuFe2O4 with peroxymonosulfate: Effects of oxidation and adsorption. , 2019, Water research.

[3]  Li-ping Zhu,et al.  Hollowsphere Nanoheterojunction of g-C3N4@TiO2 with High Visible Light Photocatalytic Property. , 2019, Langmuir : the ACS journal of surfaces and colloids.

[4]  J. Crittenden,et al.  The role of reactive oxygen species and carbonate radical in oxcarbazepine degradation via UV, UV/H2O2: Kinetics, mechanisms and toxicity evaluation. , 2018, Water research.

[5]  J. Crittenden,et al.  Destruction of phenicol antibiotics using the UV/H2O2 process: Kinetics, byproducts, toxicity evaluation and trichloromethane formation potential , 2018, Chemical Engineering Journal.

[6]  Xi‐Wen Du,et al.  Ti3+ defect mediated g-C3N4/TiO2 Z-scheme system for enhanced photocatalytic redox performance , 2018, Applied Surface Science.

[7]  S. Guan,et al.  Molten salt assisted in-situ synthesis of TiO2/g-C3N4 composites with enhanced visible-light-driven photocatalytic activity and adsorption ability , 2018, Journal of Photochemistry and Photobiology A: Chemistry.

[8]  M. Zou,et al.  Effects of calcining temperature on formation of hierarchical TiO 2 /g-C 3 N 4 hybrids as an effective Z-scheme heterojunction photocatalyst , 2018 .

[9]  Wu Lei,et al.  Preparation of g-C3N4/TiO2/BiVO4 composite and its application in photocatalytic degradation of pollutant from TATB production under visible light irradiation , 2018 .

[10]  M. Faraji,et al.  TiO2 nanotubes/Ti plates modified by silver–benzene with enhanced photocatalytic antibacterial properties , 2018 .

[11]  Liben Li,et al.  Synthesis of TiO2@g-C3N4 core-shell nanorod arrays with Z-scheme enhanced photocatalytic activity under visible light. , 2017, Journal of colloid and interface science.

[12]  A. Saha,et al.  Hydrogenated MoS2 QD-TiO2 heterojunction mediated efficient solar hydrogen production. , 2017, Nanoscale.

[13]  Dehong Chen,et al.  Mesoporous TiO2/g-C3N4 Microspheres with Enhanced Visible-Light Photocatalytic Activity , 2017 .

[14]  C. Xie,et al.  In situ synthesis of C-TiO2/g-C3N4 heterojunction nanocomposite as highly visible light active photocatalyst originated from effective interfacial charge transfer , 2017 .

[15]  W. Ho,et al.  Hybridization of rutile TiO₂ (rTiO₂) with g-C₃N₄ quantum dots (CN QDs): An efficient visible-light-driven z-scheme hybridized photocatalyst , 2017 .

[16]  A. Ganguli,et al.  Enhanced photocatalytic activity of g-C3N4-TiO2 nanocomposites for degradation of Rhodamine B dye , 2017 .

[17]  Hongtao Yu,et al.  Decoration of TiO 2 nanotube arrays by graphitic-C 3 N 4 quantum dots with improved photoelectrocatalytic performance , 2017 .

[18]  Qian Yang,et al.  In-situ construction of all-solid-state Z-scheme g-C3N4/TiO2 nanotube arrays photocatalyst with enhanced visible-light-induced properties , 2016 .

[19]  Hua Tang,et al.  Novel spindle-shaped nanoporous TiO2 coupled graphitic g-C3N4 nanosheets with enhanced visible-light photocatalytic activity , 2016 .

[20]  T. Klimczuk,et al.  Photocatalytic activity of nitrogen doped TiO2 nanotubes prepared by anodic oxidation: The effect of applied voltage, anodization time and amount of nitrogen dopant , 2016 .

[21]  Chuanyi Wang,et al.  TiO2/g-C3N4 nanosheets hybrid photocatalyst with enhanced photocatalytic activity under visible light irradiation , 2016, Research on Chemical Intermediates.

[22]  Yuzhen Li,et al.  Graphitic C3 N4 -Sensitized TiO2 Nanotube Layers: A Visible-Light Activated Efficient Metal-Free Antimicrobial Platform. , 2016, Chemistry.

[23]  X. Tan,et al.  Fabrication of g-C3N4/TiO2 hierarchical spheres with reactive {001} TiO2 crystal facets and its visible-light photocatalytic activity , 2016 .

[24]  Xiaoqiang Yu,et al.  Fabrication of TiO2/RGO/Cu2O heterostructure for photoelectrochemical hydrogen production , 2016 .

[25]  P. Schmuki,et al.  Pt‐Decorated g‐C3N4/TiO2 Nanotube Arrays with Enhanced Visible‐Light Photocatalytic Activity for H2 Evolution , 2016, ChemistryOpen.

[26]  T. Natarajan,et al.  Influence of TiO2 morphology on the photocatalytic efficiency of direct Z-scheme g-C3N4/TiO2 photocatalysts for isoniazid degradation , 2015 .

[27]  John T. S. Irvine,et al.  Organic Semiconductor g‐C3N4 Modified TiO2 Nanotube Arrays for Enhanced Photoelectrochemical Performance in Wastewater Treatment , 2015 .

[28]  C. Cao,et al.  One Dimensional Graphitic Carbon Nitrides as Effective Metal-Free Oxygen Reduction Catalysts , 2015, Scientific Reports.

[29]  Xiaofei Yang,et al.  Fabrication of P25/Ag3PO4/graphene oxide heterostructures for enhanced solar photocatalytic degradation of organic pollutants and bacteria , 2015 .

[30]  Ying Dai,et al.  In-Situ-Reduced Synthesis of Ti³⁺ Self-Doped TiO₂/g-C₃N₄ Heterojunctions with High Photocatalytic Performance under LED Light Irradiation. , 2015, ACS applied materials & interfaces.

[31]  Q. Cui,et al.  Well-aligned carbon nitride nanorods: the template-free synthesis and their optical and thermal properties , 2015 .

[32]  Ke-Qin Zhang,et al.  TiO2 nanotube arrays loaded with reduced graphene oxide films: facile hybridization and promising photocatalytic application , 2015 .

[33]  Ling Wu,et al.  Efficient synthesis of monolayer carbon nitride 2D nanosheet with tunable concentration and enhanced visible-light photocatalytic activities , 2015 .

[34]  S. Phanichphant,et al.  Enhanced visible-light photocatalytic activity of g-C3N4/TiO2 films. , 2014, Journal of colloid and interface science.

[35]  Yangen Zhou,et al.  Gold-plasmon enhanced solar-to-hydrogen conversion on the {001} facets of anatase TiO2 nanosheets , 2014 .

[36]  C. Cao,et al.  Tubular graphitic-C3N4: a prospective material for energy storage and green photocatalysis , 2013 .

[37]  Jiaguo Yu,et al.  Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air. , 2013, Physical chemistry chemical physics : PCCP.

[38]  Yongfa Zhu,et al.  Photocatalytic Activity Enhanced via g-C3N4 Nanoplates to Nanorods , 2013 .

[39]  Zhiqun Lin,et al.  p-n Heterojunction photoelectrodes composed of Cu2O-loaded TiO2 nanotube arrays with enhanced photoelectrochemical and photoelectrocatalytic activities , 2013 .

[40]  Y. Liu,et al.  Solution combustion synthesis and visible light-induced photocatalytic activity of mixed amorphous and crystalline MgAl2O4 nanopowders , 2011 .

[41]  Yueping Fang,et al.  Carbon nitride polymer sensitized TiO2 nanotube arrays with enhanced visible light photoelectrochemical and photocatalytic performance. , 2011, Chemical communications.

[42]  Feng Zhou,et al.  TiO2 nanotubes: Structure optimization for solar cells , 2011 .

[43]  S. Rohani,et al.  Modified TiO2 nanotube arrays (TNTAs): progressive strategies towards visible light responsive photoanode, a review , 2011 .

[44]  Y. Lai,et al.  Nitrogen-doped TiO2 nanotube array films with enhanced photocatalytic activity under various light sources. , 2010, Journal of hazardous materials.

[45]  Xianzhi Fu,et al.  TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from other TiO2-carbon composite materials? , 2010, ACS nano.

[46]  Huilong Wang,et al.  Solar-light-assisted Fenton oxidation of 2,4-dinitrophenol (DNP) using Al2O3-supported Fe(III)-5-sulfosalicylic acid (ssal) complex as catalyst , 2010 .

[47]  S. Anandan,et al.  An Overview of Semi-Conductor Photocatalysis: Modification of TiO2 Nanomaterials , 2010 .

[48]  S. Shukla,et al.  Photocatalytic degradation of 2,4-dinitrophenol. , 2009, Journal of hazardous materials.

[49]  M. Mahmoudi,et al.  Biological removal of phenol from strong wastewaters using a novel MSBR. , 2009, Water research.

[50]  M. Anpo,et al.  Photocatalytic water splitting using Pt-loaded visible light-responsive TiO2 thin film photocatalysts , 2007 .

[51]  X. Lu,et al.  Treatment of nitrophenols by cathode reduction and electro-Fenton methods. , 2006, Journal of hazardous materials.

[52]  K. Miyamoto,et al.  Degradation of 2,4-dinitrophenol by a mixed culture of photoautotrophic microorganisms , 2006 .

[53]  Juan Li,et al.  Enhanced visible light activity on direct contact Z-scheme g-C3N4-TiO2 photocatalyst , 2017 .

[54]  Hexing Li,et al.  Nanotube-confinement induced size-controllable g-C3N4 quantum dots modified single-crystalline TiO2 nanotube arrays for stable synergetic photoelectrocatalysis , 2016 .

[55]  M. Antonietti,et al.  A metal-free polymeric photocatalyst for hydrogen production from water under visible light. , 2009, Nature materials.