Balancing Neumann-Neumann preconditioners for mixed approximations of heterogeneous problems in linear elasticity

Summary.Balancing Neumann-Neumann methods are extented to mixed formulations of the linear elasticity system with discontinuous coefficients, discretized with mixed finite or spectral elements with discontinuous pressures. These domain decomposition methods implicitly eliminate the degrees of freedom associated with the interior of each subdomain and solve iteratively the resulting saddle point Schur complement using a hybrid preconditioner based on a coarse mixed elasticity problem and local mixed elasticity problems with natural and essential boundary conditions. A polylogarithmic bound in the local number of degrees of freedom is proven for the condition number of the preconditioned operator in the constant coefficient case. Parallel and serial numerical experiments confirm the theoretical results, indicate that they still hold for systems with discontinuous coefficients, and show that our algorithm is scalable, parallel, and robust with respect to material heterogeneities. The results on heterogeneous general problems are also supported in part by our theory.

[1]  Frédéric Nataf,et al.  A domain decomposition preconditioner for an advection–diffusion problem , 2000 .

[2]  J. Pasciak,et al.  A domain decomposition technique for Stokes problems , 1990 .

[3]  P. F. Fischer,et al.  An overlapping Schwarz method for spectral element simulation of three-dimensional incompressible flows , 1998 .

[4]  Luca F. Pavarino Neumann-Neumann algorithms for spectral elements in three dimensions , 1997 .

[5]  EINAR M. R NQUIST,et al.  Domain Decomposition Methods for the Steady Stokes Equations , 1999 .

[6]  O. Widlund,et al.  Schwarz Methods of Neumann-Neumann Type for Three-Dimensional Elliptic Finite Element Problems , 1993 .

[7]  Anthony T. Patera,et al.  Analysis of Iterative Methods for the Steady and Unsteady Stokes Problem: Application to Spectral Element Discretizations , 1993, SIAM J. Sci. Comput..

[8]  Patrick Le Tallec,et al.  A Neumann--Neumann Domain Decomposition Algorithm for Solving Plate and Shell Problems , 1995 .

[9]  Marian Brezina,et al.  Balancing domain decomposition for problems with large jumps in coefficients , 1996, Math. Comput..

[10]  J. Mandel,et al.  Balancing domain decomposition for mixed finite elements , 1995 .

[11]  Olof B. Widlund,et al.  Balancing Neumann-Neumann Methods for Mixed Approximations of Linear Elasticity , 2002 .

[12]  Mark Ainsworth,et al.  Domain decomposition preconditioners for p and hp finite element approximation of Stokes equations , 1999 .

[13]  William Gropp,et al.  Domain Decomposition: Parallel Mul-tilevel Methods for Elliptic PDEs , 1996 .

[14]  R. Stenberg,et al.  Mixed $hp$ finite element methods for problems in elasticity and Stokes flow , 1996 .

[15]  Olof B. Widlund,et al.  A Domain Decomposition Method with Lagrange Multipliers and Inexact Solvers for Linear Elasticity , 2000, SIAM J. Sci. Comput..

[16]  O. Widlund,et al.  Balancing Neumann‐Neumann methods for incompressible Stokes equations , 2001 .

[17]  Mario A. Casarin Schwarz preconditioners for the spectral element discretization of the steady Stokes and Navier-Stokes equations , 2001, Numerische Mathematik.

[18]  Yvon Maday,et al.  UNIFORM INF–SUP CONDITIONS FOR THE SPECTRAL DISCRETIZATION OF THE STOKES PROBLEM , 1999 .

[19]  A. Toselli Neumann-Neumann Methods for Vector Field Problems , 1999 .

[20]  O. Widlund,et al.  FETI and Neumann--Neumann Iterative Substructuring Methods: Connections and New Results , 1999 .

[21]  Paul Fischer,et al.  An Overlapping Schwarz Method for Spectral Element Solution of the Incompressible Navier-Stokes Equations , 1997 .

[22]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[23]  Olof B. Widlund,et al.  Iterative Substructuring Methods for Spectral Element Discretizations of Elliptic Systems. II: Mixed Methods for Linear Elasticity and Stokes Flow , 1999, SIAM J. Numer. Anal..

[24]  Marina Vidrascu,et al.  Méthode de Schwarz additive avec solveur grossier pour problèmes non symétriques , 2000 .

[25]  Rolf Stenberg,et al.  Mixed Hp Nite Element Methods for Problems in Elasticity and Stokes Ow , 1994 .

[26]  Alfio Quarteroni,et al.  A relaxation procedure for domain decomposition methods using finite elements , 1989 .

[27]  Mario A. Casarin Schwarz Preconditioners for Spectral and Mortar Finite Element Methods with Applications to Incompressible Fluids , 1996 .

[28]  L. Pavarino,et al.  Overlapping Schwarz methods for mixed linear elasticity and Stokes problems , 1998 .

[29]  Alfio Quarteroni,et al.  Domain Decomposition Methods for Partial Differential Equations , 1999 .

[30]  J. Mandel Balancing domain decomposition , 1993 .

[31]  Abani K. Patra,et al.  Non-overlapping domain decomposition methods for adaptive hp approximations of the Stokes problem with discontinuous pressure fields , 1997 .

[32]  Paul Fischer,et al.  Spectral element methods for large scale parallel Navier—Stokes calculations , 1994 .