Stationary processes and pure point diffraction

We consider the construction and classification of some new mathematical objects, called ergodic spatial stationary processes, on locally compact abelian groups. These objects provide a natural and very general setting for studying diffraction and the famous inverse problems associated with it. In particular, we can construct complete families of solutions to the inverse problem from any given positive pure point measure that is chosen to be the diffraction. In this case these processes can be classified by the dual of the group of relators based on the set of Bragg peaks, and this gives an abstract solution to the homometry problem for pure point diffraction.

[1]  D. Lenz Continuity of Eigenfunctions of Uniquely Ergodic Dynamical Systems and Intensity of Bragg Peaks , 2006, math-ph/0608026.

[2]  B. Solomyak,et al.  Spectrum of dynamical systems arising from Delone sets , 1998 .

[3]  J. G. D. Lamadrid,et al.  Almost Periodic Measures , 1990 .

[4]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[5]  P. A. B. Pleasants,et al.  Local Complexity of Delone Sets and Crystallinity , 2002, Canadian Mathematical Bulletin.

[6]  Jean-Baptiste Gouéré,et al.  Diffraction et mesure de Palm des processus ponctuels , 2003 .

[7]  Kristian Kirsch,et al.  Methods Of Modern Mathematical Physics , 2016 .

[8]  Ron Lifshitz,et al.  The symmetry of quasiperiodic crystals , 1996 .

[9]  M. Baake,et al.  Diffraction of Stochastic Point Sets: Explicitly Computable Examples , 2008, 0803.1266.

[10]  Samuel Zaidman,et al.  Almost-periodic functions in abstract spaces , 1985 .

[11]  R. Cowan An introduction to the theory of point processes , 1978 .

[12]  N. Mermin The Symmetry of Crystals , 1997 .

[13]  David W. Littlefield The Royal Institution , 2009, Nature.

[14]  S. Dworkin Spectral theory and x-ray diffraction , 1993 .

[15]  M. Baake,et al.  Institute for Mathematical Physics Dynamical Systems on Translation Bounded Measures: Pure Point Dynamical and Diffraction Spectra Dynamical Systems on Translation Bounded Measures: Pure Point Dynamical and Diffraction Spectra , 2022 .

[16]  R. Moody,et al.  Extinctions and Correlations for Uniformly Discrete Point Processes with Pure Point Dynamical Spectra , 2009, 0902.0567.

[17]  R. Withers Chapter 6 – “Disorder”: Structured Diffuse Scattering and Local Crystal Chemistry , 2008 .

[18]  C. Radin Miles of tiles , 1999 .

[19]  Michael Baake,et al.  Some Comments on the Inverse Problem of Pure Point Diffraction , 2012, 1210.3460.

[20]  F. Grünbaum,et al.  The use of higher-order invariants in the determination of generalized Patterson cyclotomic sets , 1995 .

[21]  M. Baake,et al.  Dynamical versus diffraction spectrum for structures with finite local complexity , 2013, Ergodic Theory and Dynamical Systems.

[22]  Venta Terauds,et al.  The Inverse Problem of Pure Point Diffraction—Examples and Open Questions , 2013, 1303.3260.

[23]  M. Baake,et al.  Homometric model sets and window covariograms , 2006, math/0610411.

[24]  Michael Baake,et al.  Hulls of aperiodic solids and gap labeling theorems , 2000 .

[25]  M. Baake,et al.  Weighted Dirac combs with pure point diffraction , 2002, math/0203030.

[26]  Michael Baake,et al.  Close-packed Dimers on the Line: Diffraction versus Dynamical Spectrum , 2010, 1011.1628.

[27]  D. Lenz Aperiodic order via dynamical systems: Diffraction for sets of finite local complexity , 2007, 0712.1323.

[28]  D. Lenz,et al.  Aperiodic order and pure point diffraction , 2008, 0802.3242.

[29]  Pure point diffraction and cut and project schemes for measures: the smooth case , 2006, math/0603453.

[30]  Boris Solomyak,et al.  Dynamics of self-similar tilings , 1997, Ergodic Theory and Dynamical Systems.

[31]  P. Walters Introduction to Ergodic Theory , 1977 .

[32]  L. H. Loomis An Introduction to Abstract Harmonic Analysis , 1953 .

[33]  A. Karr Point Processes and Their Statistical Inference. , 1994 .

[34]  Daryl J. Daley,et al.  An Introduction to the Theory of Point Processes , 2013 .

[35]  Jacek Miekisz,et al.  How should one define a (weak) crystal? , 1992 .

[36]  R. Moody,et al.  How Model Sets Can Be Determined by Their Two-point and Three-point Correlations , 2009, 0901.4381.

[37]  Robert Tibshirani,et al.  An Introduction to the Bootstrap , 1994 .

[38]  M. Baake,et al.  Diffraction Theory of Point Processes: Systems with Clumping and Repulsion , 2014, 1405.4255.

[39]  A. Mishchenko C*-Algebras and K-theory , 1979 .

[40]  C. Radin Symmetry and Tilings , 1999 .

[41]  Boris Solomyak,et al.  Pure Point Dynamical and Diffraction Spectra , 2002, 0910.4809.

[42]  T. Eisner,et al.  Ergodic Theorems , 2019, Probability.

[43]  Robert V. Moody,et al.  The Mathematics of Long-Range Aperiodic Order , 1997 .

[44]  L. Schwartz Théorie des distributions , 1966 .

[45]  Peter A. B. Pleasants,et al.  Repetitive Delone sets and quasicrystals , 2003, Ergodic Theory and Dynamical Systems.

[46]  A. Tempelman Ergodic Theorems for Group Actions , 1992 .

[47]  E. Robinson A Halmos--von Neumann theorem for model sets, and almost automorphic dynamical systems , 2007 .

[48]  E. Robinson,et al.  The dynamical properties of Penrose tilings , 1996 .

[49]  Ü Kuran,et al.  POTENTIAL THEORY ON LOCALLY COMPACT ABELIAN GROUPS , 1977 .

[50]  M. Baake,et al.  Mathematical quasicrystals and the problem of diffraction , 2000 .

[51]  Charles Radin,et al.  Space tilings and local isomorphism , 1992 .

[52]  Nicolae Strungaru,et al.  Almost Periodic Measures and Long-Range Order in Meyer Sets , 2005, Discret. Comput. Geom..

[53]  R. Moody,et al.  Point Sets and Dynamical Systems In the Autocorrelation Topology , 2004, Canadian Mathematical Bulletin.

[54]  D. Lenz,et al.  Pure Point spectrum for measure dynamical systems on locally compact Abelian groups , 2007, 0704.2498.

[55]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[56]  M. Baake,et al.  Characterization of model sets by dynamical systems , 2005, Ergodic Theory and Dynamical Systems.

[57]  Jean-Baptiste Gouéré Quasicrystals and Almost Periodicity , 2002 .

[58]  R. Moody,et al.  Dworkin’s argument revisited: Point processes, dynamics, diffraction, and correlations , 2007, 0712.3287.

[59]  M. Mirzakhani,et al.  Introduction to Ergodic theory , 2010 .

[60]  A. Hof,et al.  On Diffraction by Aperiodic Structures , 2004 .

[61]  Michael Baake,et al.  Directions in Mathematical Quasicrystals , 2000 .

[62]  R. Moody,et al.  Almost Periodic Measures and their Fourier Transforms , 2017 .