The Manifold Varieties of Poly(2‐Hydroxyethyl Methacrylate) Hydrogels−IPNs

[1]  Lingli Li,et al.  A double network strategy to improve epithelization of a poly(2-hydroxyethyl methacrylate) hydrogel for corneal repair application , 2016 .

[2]  João F. Mano,et al.  Extremely strong and tough hydrogels as prospective candidates for tissue repair – A review , 2015 .

[3]  V. Juvekar,et al.  Quantification of thermodynamics of aqueous solutions of poly(ethylene glycols): Role of calorimetry , 2009 .

[4]  Torsten Remmler,et al.  Rheological properties of homogeneous and heterogeneous poly(2-hydroxyethyl methacrylate) hydrogels , 2012 .

[5]  Mary B. Chan-Park,et al.  High Refractive Index Inorganic-Organic Interpenetrating Polymer Network (IPN) Hydrogel Nanocomposite toward Artificial Cornea Implants. , 2012, ACS macro letters.

[6]  Wei Li,et al.  Measurement and calculation of liquid-liquid equilibria of binary aqueous polymer solutions , 2000 .

[7]  I J Constable,et al.  Synthesis, physical characterization, and biological performance of sequential homointerpenetrating polymer network sponges based on poly(2-hydroxyethyl methacrylate). , 1999, Journal of biomedical materials research.

[8]  Miroslava Dušková-Smrčková,et al.  Network structure formation during crosslinking of organic coating systems , 2000 .

[9]  L Sprincl,et al.  Effect of porosity of heterogeneous poly(glycol monomethacrylate) gels on the healing-in of test implants. , 1971, Journal of biomedical materials research.

[10]  Jian Ping Gong,et al.  Why are double network hydrogels so tough , 2010 .

[11]  W. Prins,et al.  Polymer-Diluent Interaction in Cross-Linked Gels of Poly(2-hydroxyethyl methacrylate) , 1972 .

[12]  D. Hukins,et al.  Rheological properties of poly(2-hydroxyethyl methacrylate) (pHEMA) as a function of water content and deformation frequency , 2003, Journal of materials science. Materials in medicine.

[13]  J. Háša,et al.  Structure and properties of hydrophilic polymers and their gels. VI. Equilibrium deformation behaviour of polyethyleneglycol methacrylate and polydiethyleneglycol methacrylate networks prepared in the presence of a diluent and swollen with water , 1966 .

[14]  Jiří Michálek,et al.  Macroporous 2-hydroxyethyl methacrylate hydrogels of dual porosity for cell cultivation: morphology, swelling, permeability, and mechanical behavior , 2014, Journal of Polymer Research.

[15]  K. Dušek,et al.  Phase separation in poly(2-hydroxyethyl methacrylate) gels in the presence of water , 1971 .

[16]  H. Tenhu,et al.  How to manipulate the upper critical solution temperature (UCST) , 2017 .

[17]  M. Šlouf,et al.  Poly(2-hydroxyethyl methacrylate)-based slabs as a mouse embryonic stem cell support. , 2004, Biomaterials.

[18]  Z Voldrich,et al.  Long-term experience with poly(glycol monomethacrylate) gel in plastic operations of the nose. , 1975, Journal of biomedical materials research.

[19]  M. Šlouf,et al.  Superporous poly(2-hydroxyethyl methacrylate) based scaffolds: Preparation and characterization , 2008 .

[20]  K. Dušek,et al.  Structure and elasticity of non-crystalline polymer networks , 1969 .

[21]  T V Chirila,et al.  An overview of the development of artificial corneas with porous skirts and the use of PHEMA for such an application. , 2001, Biomaterials.

[22]  T. Kurokawa,et al.  Super tough double network hydrogels and their application as biomaterials , 2012 .

[23]  J. Arons,et al.  Thermodynamics of phase separation in aqueous solutions of polymers , 1993 .

[24]  A. Goepferich,et al.  Hydrogels in ophthalmic applications. , 2015, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[25]  O. Wichterle,et al.  Hydrophilic Gels for Biological Use , 1960, Nature.

[26]  Jindřich Kopeček,et al.  Hydrogels: From soft contact lenses and implants to self‐assembled nanomaterials , 2009 .

[27]  K. Dušek Phase separation during the formation of three‐dimensional polymers , 1965 .

[28]  Miguel F. Refojo,et al.  Hydrogels from 2‐hydroxyethyl methacrylate and propylene glycol monoacrylate , 1965 .

[29]  Y. Zuo,et al.  Property-based design: optimization and characterization of polyvinyl alcohol (PVA) hydrogel and PVA-matrix composite for artificial cornea , 2014, Journal of Materials Science: Materials in Medicine.

[30]  A. Hill,et al.  Sequential homo-interpenetrating polymer networks of poly(2-hydroxyethyl methacrylate): Synthesis, characterization, and calcium uptake , 2012 .

[31]  Usman Sorathia,et al.  Interpenetrating Polymer Networks: An Overview , 1990 .

[32]  P. Krajnc,et al.  Highly Porous Open-Cellular Monoliths from 2-Hydroxyethyl Methacrylate Based High Internal Phase Emulsions (HIPEs): Preparation and Void Size Tuning , 2007 .

[33]  Jennifer R. Cochran,et al.  Interpenetrating polymer network hydrogel scaffolds for artificial cornea periphery , 2015, Journal of Materials Science: Materials in Medicine.

[34]  T. Kurokawa,et al.  Double‐Network Hydrogels with Extremely High Mechanical Strength , 2003 .

[35]  Paul D. Dalton,et al.  THE USE OF HYDROPHILIC POLYMERS AS ARTIFICIAL VITREOUS , 1998 .

[36]  W. Prins,et al.  Rheo-Optics of Poly(2-hydroxyethyl methacrylate) Gels. I Effect of Nature and Amount of Diluent , 1970 .

[37]  K. Dušek,et al.  Solubilization of poly(2-hydroxyethyl methacrylate) with aqueous salt solutions; Swelling of gels , 1977 .

[38]  K. Dušek,et al.  Structure and properties of hydrophilic polymers and their gels. XI. Microsyneresis in swollen poly(ethylene glycol methacrylate) gels induced by changes of temperature , 1969 .

[39]  K. Dušek,et al.  Effect of diluents on the microsyneresis in poly(2-hydroxyethyl methacrylate) gels induced by temperature changes , 1971 .

[40]  J. Scaiano,et al.  Collagen-phosphorylcholine interpenetrating network hydrogels as corneal substitutes. , 2009, Biomaterials.

[41]  Jindřich Kopeček,et al.  Mechanism of the three‐dimensional polymerization of glycol methacrylates. II. The system glycol monomethacrylate–glycol dimethacrylates–solvents , 1971 .