Wave reflection at a free interface in an anisotropic pyroelectric medium with nonclassical thermoelasticity

In this paper, the well-established two-dimensional mathematical model for linear pyroelectric materials is employed to investigate the reflection of waves at the boundary between a vacuum and an elastic, transversely isotropic, pyroelectric material. A comparative study between the solutions of (a) classical thermoelasticity, (b) Cattaneo–Lord–Shulman theory and (c) Green–Lindsay theory equations, characterised by none, one and two relaxation times, respectively, is presented. Suitable boundary conditions are considered in order to determine the reflection coefficients when incident elasto–electro–thermal waves impinge the free interface. It is established that, in the quasi-electrostatic approximation, three different classes of waves: (1) two principally elastic waves, namely a quasi-longitudinal Primary (qP) wave and a quasi-transverse Secondary (qS) wave; and (2) a mainly thermal (qT) wave. The observed electrical effects are, on the other hand, a direct consequence of mechanical and thermal phenomena due to pyroelectric coupling. The computed reflection coefficients of plane qP waves are found to depend upon the angle of incidence, the elastic, electric and thermal parameters of the medium, as well as the thermal relaxation times. The special cases of normal and grazing incidence are also derived and discussed. Finally, the reflection coefficients are computed for cadmium selenide observing the influence of (1) the anisotropy of the material, (2) the electrical potential and (3) temperature variations and (4) the thermal relaxation times on the reflection coefficients.

[1]  L. Placidi,et al.  Continuum-mechanical, Anisotropic Flow model for polar ice masses, based on an anisotropic Flow Enhancement factor , 2009, 0903.0688.

[2]  Ivan Giorgio,et al.  Propagation of linear compression waves through plane interfacial layers and mass adsorption in second gradient fluids , 2013 .

[3]  Baljeet Singh Wave propagation in a prestressed piezoelectric half-space , 2010 .

[4]  Zheng H. Zhu,et al.  Reflection and refraction of plane waves at interface between two piezoelectric media , 2012 .

[5]  A. Spencer,et al.  The Formulation of Constitutive Equation for Anisotropic Solids , 1982 .

[6]  Victor A. Eremeyev,et al.  Acceleration waves in micropolar elastic media , 2005 .

[7]  Dionisio Del Vescovo,et al.  Dynamic problems for metamaterials: Review of existing models and ideas for further research , 2014 .

[8]  S. Vidoli,et al.  Generalized Hooke's law for isotropic second gradient materials , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[9]  Giuseppe Piccardo,et al.  Linear instability mechanisms for coupled translational galloping , 2005 .

[10]  V. Z. Parton,et al.  Electromagnetoelasticity: Piezoelectrics and Electrically Conductive Solids , 1988 .

[11]  Stefano Vidoli,et al.  Vibration control in plates by uniformly distributed PZT actuators interconnected via electric networks , 2001 .

[12]  Jean-Louis Guyader,et al.  Switch between fast and slow Biot compression waves induced by ''second gradient microstructure{''} at material discontinuity surfaces in porous media , 2013 .

[13]  Luca Placidi,et al.  Wave propagation in relaxed micromorphic continua: modeling metamaterials with frequency band-gaps , 2013, 1309.1722.

[14]  Jungho Ryu,et al.  Magnetoelectric Effect in Composites of Magnetostrictive and Piezoelectric Materials , 2002 .

[15]  Rajneesh Kumar,et al.  Wave propagation at the boundary surface of elastic and initially stressed viscothermoelastic diffusion with voids media , 2013 .

[16]  Leopoldo Greco,et al.  B-Spline interpolation of Kirchhoff-Love space rods , 2013 .

[17]  F. dell'Isola,et al.  Continuum modelling of piezoelectromechanical truss beams: an application to vibration damping , 1998 .

[18]  Francesco dell’Isola,et al.  Boundary Conditions at Fluid-Permeable Interfaces in Porous Media: a Variational Approach , 2009 .

[19]  Ivan Giorgio,et al.  The mathematical model of reflection and refraction of longitudinal waves in thermo-piezoelectric materials , 2014 .

[20]  Z. Ye Handbook of advanced dielectric, piezoelectric and ferroelectric materials , 2008 .

[21]  Ivan Giorgio,et al.  Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second-gradient materials , 2014 .

[22]  Leopoldo Greco,et al.  An implicit G1 multi patch B-spline interpolation for Kirchhoff–Love space rod , 2014 .

[23]  Luca Placidi,et al.  An anisotropic flow law for incompressible polycrystalline materials , 2005 .

[24]  Zuo-Guang Ye,et al.  Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials : Synthesis, Properties and Applications , 2008 .

[25]  Emanuele Reccia,et al.  FEM-DEM Modeling for Out-of-plane Loaded Masonry Panels: A Limit Analysis Approach , 2012 .

[26]  F. Darve,et al.  A Continuum Model for Deformable, Second Gradient Porous Media Partially Saturated with Compressible Fluids , 2013 .

[27]  S. Guo The thermo-electromagnetic waves in piezoelectric solids , 2011 .

[28]  Luca Placidi,et al.  A variational approach for a nonlinear 1-dimensional second gradient continuum damage model , 2015 .

[29]  Xiaoguang Yuan,et al.  Waves in Pyroelectrics , 2008 .

[30]  J. N. Sharma,et al.  Reflection of piezothermoelastic waves from the charge and stress free boundary of a transversely isotropic half space , 2008 .

[31]  H. Kim,et al.  Particle dynamics calculations of wall stresses and slip velocities for couette flow of smooth inelastic spheres , 1994 .

[32]  S. S. Singh Transverse wave at a plane interface in thermo-elastic materials with voids , 2013 .

[33]  S. M. Abo-Dahab,et al.  The influence of the viscosity and the magnetic field on reflection and transmission of waves at interface between magneto-viscoelastic materials , 2008 .

[34]  Luca Placidi,et al.  A unifying perspective: the relaxed linear micromorphic continuum , 2013, Continuum Mechanics and Thermodynamics.

[35]  Li Min Zhou,et al.  Micromechanics approach to the magnetoelectric properties of laminate and fibrous piezoelectric/magnetostrictive composites , 2004 .

[36]  A. Khurana,et al.  Elastic waves in an electro-microelastic solid , 2008 .

[37]  Giuseppe Piccardo,et al.  Postcritical Behavior of Cables Undergoing Two Simultaneous Galloping Modes , 1998 .

[38]  Maurizio Porfiri,et al.  Piezoelectric Passive Distributed Controllers for Beam Flexural Vibrations , 2004 .

[39]  J. P. Boehler,et al.  Representations for Isotropic and Anisotropic Non-Polynomial Tensor Functions , 1987 .

[40]  Zhen-Bang Kuang,et al.  Reflection and transmission of waves in pyroelectric and piezoelectric materials , 2011 .

[41]  S. Crampin,et al.  Seismic body waves in anisotropic media: Reflection and refraction at a plane interface , 1977 .

[42]  Ugo Andreaus,et al.  Soft-impact dynamics of deformable bodies , 2013 .

[43]  Y. Song,et al.  Study on the reflection of photothermal waves in a semiconducting medium under generalized thermoelastic theory , 2012 .

[44]  G. Rosi,et al.  The effect of fluid streams in porous media on acoustic compression wave propagation, transmission, and reflection , 2013 .

[45]  A. Cazzani,et al.  On some mixed finite element methods for plane membrane problems , 1997 .

[46]  Francesco dell’Isola,et al.  On a model of layered piezoelectric beams including transverse stress effect , 2004 .

[47]  H. Lord,et al.  A GENERALIZED DYNAMICAL THEORY OF THERMOELASTICITY , 1967 .

[48]  M. Othman,et al.  Reflection of magneto-thermo-elastic waves from a rotating elastic half-space in generalized thermoelasticity under three theories , 2008 .

[49]  G. Maugin,et al.  THERMOELASTIC WAVE AND FRONT PROPAGATION , 2002 .

[50]  Giulio Sciarra,et al.  A VARIATIONAL DEDUCTION OF SECOND GRADIENT POROELASTICITY PART I: GENERAL THEORY , 2008 .

[51]  Yannis F. Dafalias,et al.  Mechanical Behavior of Anisotropic Solids , 1984 .

[52]  Rajneesh Kumar,et al.  Propagation of waves in an electro-microstretch generalized thermoelastic semi-space , 2009 .

[53]  N. Roveri,et al.  Fractional dissipation generated by hidden wave-fields , 2015 .

[54]  Francesco dell’Isola,et al.  Linear plane wave propagation and normal transmission and reflection at discontinuity surfaces in second gradient 3D continua , 2012 .

[55]  A. Carcaterra,et al.  Energy Distribution in Impulsively Excited Structures , 2012 .

[56]  Francesco dell’Isola,et al.  Extension of the Euler-Bernoulli model of piezoelectric laminates to include 3D effects via a mixed approach , 2006 .

[57]  J. N. Sharma,et al.  REFLECTION OF GENERALIZED THERMOELASTIC WAVES FROM THE BOUNDARY OF A HALF-SPACE , 2003 .

[58]  G. Maugin,et al.  Wave motions in unbounded poroelastic solids infused with compressible fluids , 2002 .

[59]  Baljeet Singh,et al.  On the theory of generalized thermoelasticity for piezoelectric materials , 2005, Appl. Math. Comput..

[60]  S. M. Abo-Dahab,et al.  On the reflection of the generalized magneto-thermo-viscoelastic plane waves , 2003 .

[61]  J. Sharma,et al.  Effect of rotation and thermal relaxation on Rayleigh waves in piezothermoelastic half space , 2008 .

[62]  Jiashi Yang,et al.  The mechanics of piezoelectric structures , 2006 .

[63]  A. Al-Hossain,et al.  The reflection phenomena of quasi-vertical transverse waves in piezoelectric medium under initial stresses , 2012 .

[64]  Jiashi Yang,et al.  An Introduction to the Theory of Piezoelectricity , 2004 .

[65]  G. Srinivasan,et al.  Giant magnetoelectric effects in layered composites of nickel zinc ferrite and lead zirconate titanate , 2002 .

[66]  Francesco dell’Isola,et al.  Variational formulation of pre-stressed solid-fluid mixture theory, with an application to wave phenomena , 2008 .

[67]  Vlado A. Lubarda,et al.  On the elastic moduli and compliances of transversely isotropic and orthotropic materials , 2008 .

[68]  J. Achenbach Wave propagation in elastic solids , 1962 .

[69]  Design and simulation of wind power generation device by PVDF piezoelectric thin film , 2016, 2016 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA).