A descent hybrid conjugate gradient method based on the memoryless BFGS update
暂无分享,去创建一个
[1] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[2] C. Storey,et al. Efficient generalized conjugate gradient algorithms, part 1: Theory , 1991 .
[3] Aleksey K. Alekseev,et al. Comparison of advanced large-scale minimization algorithms for the solution of inverse ill-posed problems , 2009, Optim. Methods Softw..
[4] François-Xavier Le Dimet,et al. Numerical Experience with Limited-Memory Quasi-Newton and Truncated Newton Methods , 1993, SIAM J. Optim..
[5] M. J. D. Powell,et al. Restart procedures for the conjugate gradient method , 1977, Math. Program..
[6] Ya-Xiang Yuan,et al. An Efficient Hybrid Conjugate Gradient Method for Unconstrained Optimization , 2001, Ann. Oper. Res..
[7] Li Zhang,et al. Global convergence of a modified Fletcher–Reeves conjugate gradient method with Armijo-type line search , 2006, Numerische Mathematik.
[8] M. Powell. Nonconvex minimization calculations and the conjugate gradient method , 1984 .
[9] Jorge Nocedal,et al. Analysis of a self-scaling quasi-Newton method , 1993, Math. Program..
[10] Shmuel S. Oren,et al. Self-scaling variable metric algorithms for unconstrained minimization , 1972 .
[11] Panayiotis E. Pintelas,et al. A limited memory descent Perry conjugate gradient method , 2016, Optim. Lett..
[12] M. Al-Baali. Numerical Experience with a Class of Self-Scaling Quasi-Newton Algorithms , 1998 .
[13] D. Luenberger,et al. SELF-SCALING VARIABLE METRIC ( SSVM ) ALGORITHMS Part I : Criteria and Sufficient Conditions for Scaling a Class of Algorithms * t , 2007 .
[14] A. Perry. A Class of Conjugate Gradient Algorithms with a Two-Step Variable Metric Memory , 1977 .
[15] Panayiotis E. Pintelas,et al. A new conjugate gradient algorithm for training neural networks based on a modified secant equation , 2013, Appl. Math. Comput..
[16] T. M. Williams,et al. Practical Methods of Optimization. Vol. 1: Unconstrained Optimization , 1980 .
[17] C. Storey,et al. Global convergence result for conjugate gradient methods , 1991 .
[18] Ya-Xiang Yuan,et al. A Nonlinear Conjugate Gradient Method with a Strong Global Convergence Property , 1999, SIAM J. Optim..
[19] Robert Plato,et al. The conjugate gradient method for linear ill-posed problems with operator perturbations , 1999, Numerical Algorithms.
[20] Yu-Hong Dai,et al. A Nonlinear Conjugate Gradient Algorithm with an Optimal Property and an Improved Wolfe Line Search , 2013, SIAM J. Optim..
[21] Angela Kunoth,et al. A wavelet-based nested iteration–inexact conjugate gradient algorithm for adaptively solving elliptic PDEs , 2008, Numerical Algorithms.
[22] C. M. Reeves,et al. Function minimization by conjugate gradients , 1964, Comput. J..
[23] D. Luenberger,et al. Self-Scaling Variable Metric (SSVM) Algorithms , 1974 .
[24] Neculai Andrei,et al. Accelerated hybrid conjugate gradient algorithm with modified secant condition for unconstrained optimization , 2010, Numerical Algorithms.
[25] Jorge Nocedal,et al. Theory of algorithms for unconstrained optimization , 1992, Acta Numerica.
[26] C. X. Kou,et al. A Modified Self-Scaling Memoryless Broyden–Fletcher–Goldfarb–Shanno Method for Unconstrained Optimization , 2015, J. Optim. Theory Appl..
[27] J. Nocedal. Updating Quasi-Newton Matrices With Limited Storage , 1980 .
[28] Reza Ghanbari,et al. Two optimal Dai–Liao conjugate gradient methods , 2015 .
[29] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[30] Reza Ghanbari,et al. A class of adaptive Dai–Liao conjugate gradient methods based on the scaled memoryless BFGS update , 2017, 4OR.
[31] Neculai Andrei,et al. Another hybrid conjugate gradient algorithm for unconstrained optimization , 2008, Numerical Algorithms.
[32] D. G. Sotiropoulos,et al. A memoryless BFGS neural network training algorithm , 2009, 2009 7th IEEE International Conference on Industrial Informatics.
[33] E. Polak,et al. Note sur la convergence de méthodes de directions conjuguées , 1969 .
[34] Reza Ghanbari,et al. A hybridization of the Polak-Ribière-Polyak and Fletcher-Reeves conjugate gradient methods , 2014, Numerical Algorithms.
[35] N. Andrei. Hybrid Conjugate Gradient Algorithm for Unconstrained Optimization , 2009 .
[36] Qunfeng Liu,et al. Two minimal positive bases based direct search conjugate gradient methods for computationally expensive functions , 2011, Numerical Algorithms.
[37] Neculai Andrei,et al. Scaled memoryless BFGS preconditioned conjugate gradient algorithm for unconstrained optimization , 2007, Optim. Methods Softw..
[38] Jorge J. Moré,et al. Benchmarking optimization software with performance profiles , 2001, Math. Program..
[39] Jorge Nocedal,et al. Global Convergence Properties of Conjugate Gradient Methods for Optimization , 1992, SIAM J. Optim..
[40] Reza Ghanbari,et al. A hybridization of the Hestenes–Stiefel and Dai–Yuan conjugate gradient methods based on a least-squares approach , 2015, Optim. Methods Softw..
[41] Emilio Spedicato,et al. Broyden's quasi-Newton methods for a nonlinear system of equations and unconstrained optimization: a review and open problems , 2014, Optim. Methods Softw..
[42] D. Shanno. On the Convergence of a New Conjugate Gradient Algorithm , 1978 .
[43] D. Touati-Ahmed,et al. Efficient hybrid conjugate gradient techniques , 1990 .
[44] Jorge Nocedal,et al. Enriched Methods for Large-Scale Unconstrained Optimization , 2002, Comput. Optim. Appl..
[45] Reza Ghanbari,et al. The Dai-Liao nonlinear conjugate gradient method with optimal parameter choices , 2014, Eur. J. Oper. Res..
[46] Nezam Mahdavi-Amiri,et al. Two effective hybrid conjugate gradient algorithms based on modified BFGS updates , 2011, Numerical Algorithms.
[47] Nezam Mahdavi-Amiri,et al. Two Modified Hybrid Conjugate Gradient Methods Based on a Hybrid Secant Equation , 2013 .
[48] M. Al-Baali. Descent Property and Global Convergence of the Fletcher—Reeves Method with Inexact Line Search , 1985 .
[49] Mehiddin Al-Baali. Global and Superlinear Convergence of a Restricted Class of Self-Scaling Methods with Inexact Line Searches, for Convex Functions , 1998, Comput. Optim. Appl..
[50] Nicholas I. M. Gould,et al. CUTE: constrained and unconstrained testing environment , 1995, TOMS.
[51] S. Nash. Newton-Type Minimization via the Lanczos Method , 1984 .
[52] Jorge Nocedal,et al. On the limited memory BFGS method for large scale optimization , 1989, Math. Program..
[53] W. Hager,et al. A SURVEY OF NONLINEAR CONJUGATE GRADIENT METHODS , 2005 .
[54] S. Nash. Preconditioning of Truncated-Newton Methods , 1985 .
[55] Christian Rey,et al. Iterative accelerating algorithms with Krylov subspaces for the solution to large-scale nonlinear problems , 2004, Numerical Algorithms.
[56] William W. Hager,et al. A New Conjugate Gradient Method with Guaranteed Descent and an Efficient Line Search , 2005, SIAM J. Optim..
[57] X. Wu,et al. Conjugate Gradient Method for Rank Deficient Saddle Point Problems , 2004, Numerical Algorithms.
[58] Li Zhang,et al. Two descent hybrid conjugate gradient methods for optimization , 2008 .
[59] M. Al-Albaalt,et al. Extra updates for the bfgs method , 2000 .
[60] Shmuel S. Oren,et al. Optimal conditioning of self-scaling variable Metric algorithms , 1976, Math. Program..
[61] Yuhong Dai. Nonlinear Conjugate Gradient Methods , 2011 .
[62] Reza Ghanbari,et al. Two hybrid nonlinear conjugate gradient methods based on a modified secant equation , 2014 .