Polarization fields: dynamic light field display using multi-layer LCDs

We introduce polarization field displays as an optically-efficient design for dynamic light field display using multi-layered LCDs. Such displays consist of a stacked set of liquid crystal panels with a single pair of crossed linear polarizers. Each layer is modeled as a spatially-controllable polarization rotator, as opposed to a conventional spatial light modulator that directly attenuates light. Color display is achieved using field sequential color illumination with monochromatic LCDs, mitigating severe attenuation and moiré occurring with layered color filter arrays. We demonstrate such displays can be controlled, at interactive refresh rates, by adopting the SART algorithm to tomographically solve for the optimal spatially-varying polarization state rotations applied by each layer. We validate our design by constructing a prototype using modified off-the-shelf panels. We demonstrate interactive display using a GPU-based SART implementation supporting both polarization-based and attenuation-based architectures. Experiments characterize the accuracy of our image formation model, verifying polarization field displays achieve increased brightness, higher resolution, and extended depth of field, as compared to existing automultiscopic display methods for dual-layer and multi-layer LCDs.

[1]  M. Glas,et al.  Principles of Computerized Tomographic Imaging , 2000 .

[2]  T. Dekker,et al.  2D/3D switchable displays , 2006, SPIE OPTO.

[3]  Hironobu Gotoda Reduction of image blurring in an autostereoscopic multilayer liquid crystal display , 2011, Electronic Imaging.

[4]  Gordon Wetzstein,et al.  Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays , 2011, ACM Trans. Graph..

[5]  Hironobu Gotoda A multilayer liquid crystal display for autostereoscopic 3D viewing , 2010, Electronic Imaging.

[6]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[7]  로저 그린스튜어트,et al.  Field-sequential display system utilizing a backlit lcd pixel array and method , 1990 .

[8]  Gregg E. Favalora Volumetric 3D displays and application infrastructure , 2005, Computer.

[9]  Chun-Ho Chen,et al.  A Field Sequential Color LCD Based on Color Fields Arrangement for Color Breakup and Flicker Reduction , 2007, Journal of Display Technology.

[10]  Shree K. Nayar,et al.  3D Display Using Passive Optical Scatterers , 2007, Computer.

[11]  Ming Lei,et al.  Prediction of optical modulation properties of twisted-nematic liquid-crystal display by improved measurement of Jones matrix , 2010 .

[12]  Ignacio Moreno,et al.  Jones matrix method for predicting and optimizing the optical modulation properties of a liquid-crystal display , 2003 .

[13]  Gordon Wong,et al.  25.4: Invited Paper: Beyond Flat Panels — Multi Layer Displays with Real Depth , 2008 .

[14]  A. Sullivan 58.3: A Solid‐state Multi‐planar Volumetric Display , 2003 .

[15]  Martin S. Banks,et al.  A stereo display prototype with multiple focal distances , 2004, ACM Trans. Graph..

[16]  Markus Kowarschik,et al.  GPU-accelerated SART reconstruction using the CUDA programming environment , 2009, Medical Imaging.

[17]  Richard F. Brubaker,et al.  Adler's Physiology of the Eye , 1976 .

[18]  G. Lippmann Epreuves reversibles donnant la sensation du relief , 1908 .

[19]  Neil A. Dodgson Analysis of the viewing zone of multiview autostereoscopic displays , 2002, IS&T/SPIE Electronic Imaging.

[20]  E. Collett Field Guide to Polarization , 2005 .

[21]  R. Jones A New Calculus for the Treatment of Optical Systems. IV. , 1942 .

[22]  A. Kak,et al.  Simultaneous Algebraic Reconstruction Technique (SART): A Superior Implementation of the Art Algorithm , 1984, Ultrasonic imaging.

[23]  Frédo Durand,et al.  Antialiasing for automultiscopic 3D displays , 2006, EGSR '06.

[24]  R. Jones,et al.  A New Calculus for the Treatment of Optical SystemsII. Proof of Three General Equivalence Theorems , 1941 .

[25]  Tomoko Hisaki,et al.  Luminance addition of a stack of multidomain liquid-crystal displays and capability for depth-fused three-dimensional display application. , 2005, Applied optics.

[26]  Andrey N. Putilin,et al.  Stereodisplay with neural network image processing , 2001, International Symposium on Advanced Display Technologies.

[27]  P. Yeh Optics of Liquid Crystal Displays , 2007, 2007 Conference on Lasers and Electro-Optics - Pacific Rim.

[28]  Douglas Lanman,et al.  Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization , 2010, ACM Trans. Graph..

[29]  J. Davis,et al.  Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator. , 2000, Applied optics.

[30]  Jeffrey A. Davis,et al.  Two-dimensional polarization rotator using a twisted-nematic liquid-crystal display. , 2007, Applied optics.

[31]  Marc Levoy,et al.  Light field rendering , 1996, SIGGRAPH.

[32]  R. Jones A New Calculus for the Treatment of Optical SystemsI. Description and Discussion of the Calculus , 1941 .

[33]  Harry Shum,et al.  Plenoptic sampling , 2000, SIGGRAPH.

[34]  Thomas F. Coleman,et al.  A Reflective Newton Method for Minimizing a Quadratic Function Subject to Bounds on Some of the Variables , 1992, SIAM J. Optim..