Correlation between physicochemical and electrochemical properties of an activated carbon doped with lanthanum for fluoride electrosorption

[1]  J. Nava,et al.  Influence of surface chemistry of activated carbon electrodes on electro-assisted adsorption of arsenate. , 2020, Journal of hazardous materials.

[2]  Uma Chatterjee,et al.  Preparation of polyvinylidene fluoride blend anion exchange membranes via non-solvent induced phase inversion for desalination and fluoride removal , 2018, Desalination.

[3]  A. Schäfer,et al.  Seasonal variation of organic matter characteristics and fluoride concentration in the Maji ya Chai River (Tanzania): Impact on treatability by nanofiltration/reverse osmosis. , 2018, The Science of the total environment.

[4]  Ting-Jie Wang,et al.  Electrically enhanced adsorption and green regeneration for fluoride removal using Ti(OH)4-loaded activated carbon electrodes. , 2018, Chemosphere.

[5]  P. M. Biesheuvel,et al.  Capacitive deionization with wire-shaped electrodes , 2018 .

[6]  R. L. Zornitta,et al.  Simultaneous analysis of electrosorption capacity and kinetics for CDI desalination using different electrode configurations , 2018 .

[7]  S. Dubey,et al.  Advances in coagulation technique for treatment of fluoride-contaminated water: a critical review , 2018 .

[8]  Jixiao Wang,et al.  Electrode configuration optimization of capacitive deionization cells based on zero charge potential of the electrodes , 2017 .

[9]  C. Balomajumder,et al.  Simultaneous electrosorptive removal of chromium(VI) and fluoride ions by capacitive deionization (CDI): Multicomponent isotherm modeling and kinetic study , 2017 .

[10]  Belén Lobato,et al.  Capacitance and surface of carbons in supercapacitors , 2017 .

[11]  Wei-bin Zhang,et al.  High volumetric energy density capacitors based on new electrode material lanthanum nitride , 2017 .

[12]  F. Qin,et al.  Adsorptive removal of fluoride from aqueous solutions using Al-humic acid-La aerogel composites , 2016 .

[13]  C. Lokhande,et al.  Supercapacitive activities of porous La2O3 symmetric flexible solid-state device by hydrothermal method , 2016 .

[14]  Peng Wu,et al.  Electrosorption of fluoride on TiO2-loaded activated carbon in water , 2016 .

[15]  Wangwang Tang,et al.  Investigation of fluoride removal from low-salinity groundwater by single-pass constant-voltage capacitive deionization. , 2016, Water research.

[16]  Chaodi Xu,et al.  A study on continuous and batch electrocoagulation process for fluoride removal , 2016 .

[17]  Gang Wang,et al.  Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization. , 2016, Water research.

[18]  P. M. Biesheuvel,et al.  Complementary surface charge for enhanced capacitive deionization. , 2016, Water research.

[19]  Yuping Li,et al.  Desalination stability of capacitive deionization using ordered mesoporous carbon: Effect of oxygen-containing surface groups and pore properties , 2015 .

[20]  Wangwang Tang,et al.  Fluoride and nitrate removal from brackish groundwaters by batch-mode capacitive deionization. , 2015, Water research.

[21]  P. E. Díaz-Flores,et al.  Fluoride removal in water by a hybrid adsorbent lanthanum-carbon. , 2015, Journal of colloid and interface science.

[22]  Ayokunle Omosebi,et al.  Enhanced Salt Removal in an Inverted Capacitive Deionization Cell Using Amine Modified Microporous Carbon Cathodes. , 2015, Environmental science & technology.

[23]  Xin Gao,et al.  Continuous operation of membrane capacitive deionization cells assembled with dissimilar potential of zero charge electrode pairs. , 2015, Journal of colloid and interface science.

[24]  Yang Yu,et al.  Modification of carbon derived from Sargassum sp. by lanthanum for enhanced adsorption of fluoride. , 2015, Journal of colloid and interface science.

[25]  E. Morallón,et al.  Electroadsorption of Arsenic from Natural Water in Granular Activated Carbon , 2014, Front. Mater..

[26]  Ayokunle Omosebi,et al.  Asymmetric electrode configuration for enhanced membrane capacitive deionization. , 2014, ACS applied materials & interfaces.

[27]  Doron Aurbach,et al.  Long term stability of capacitive de-ionization processes for water desalination: The challenge of positive electrodes corrosion , 2013 .

[28]  Chao Pan,et al.  Hierarchical activated carbon nanofiber webs with tuned structure fabricated by electrospinning for capacitive deionization , 2012 .

[29]  Katsutoshi Inoue,et al.  Adsorption behavior of orange waste gel for some rare earth ions and its application to the removal of fluoride from water , 2012 .

[30]  Linda Zou,et al.  A study of the capacitive deionisation performance under various operational conditions. , 2012, Journal of hazardous materials.

[31]  Feiyu Kang,et al.  Relation between the charge efficiency of activated carbon fiber and its desalination performance. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[32]  Wenming Ding,et al.  Fluoride Removal by Lanthanum Alginate Bead: Adsorbent Characterization and Adsorption Mechanism , 2011 .

[33]  W. Ding,et al.  Synthesis and characterization of La(OH)3 nanopowders from hydrolysis of lanthanum carbide , 2011 .

[34]  Jae-Hwan Choi,et al.  Improvement in the capacitance of a carbon electrode prepared using water-soluble polymer binder for a capacitive deionization application , 2010 .

[35]  Nitin Labhsetwar,et al.  Synthesis of La-incorporated chitosan beads for fluoride removal from water , 2010 .

[36]  P. M. Biesheuvel,et al.  Charge Efficiency: A Functional Tool to Probe the Double-Layer Structure Inside of Porous Electrodes and Application in the Modeling of Capacitive Deionization , 2010 .

[37]  Bingqing Wei,et al.  Effect of temperature on the capacitance of carbon nanotube supercapacitors. , 2009, ACS nano.

[38]  M. A. Ortega-Guerrero Presencia, distribución, hidrogeoquímica y origen de arsénico, fluoruro y otros elementos traza disueltos en agua subterránea, a escala de cuenca hidrológica tributaria de Lerma-Chapala, México , 2009 .

[39]  Pierre-Louis Taberna,et al.  Desolvation of ions in subnanometer pores and its effect on capacitance and double-layer theory. , 2008, Angewandte Chemie.

[40]  P. Taberna,et al.  Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer , 2006, Science.

[41]  Yury Gogotsi,et al.  Effect of pore size and surface area of carbide derived carbons on specific capacitance , 2006 .

[42]  M. C. Alonso,et al.  Electrochemical and analytical assessment of galvanized steel reinforcement pre-treated with Ce and La salts under alkaline media , 2006 .

[43]  M. Dresselhaus,et al.  Selective and Efficient Impregnation of Metal Nanoparticles on Cup-Stacked-Type Carbon Nanofibers , 2003 .

[44]  T. D. Tran,et al.  Electrosorption of inorganic salts from aqueous solution using carbon aerogels. , 2002, Environmental science & technology.

[45]  Chris Aldrich,et al.  Treatment of acid mine water by use of heavy metal precipitation and ion exchange , 2000 .

[46]  H. Wendt,et al.  Fundamentals of electrosorption on activated carbon for wastewater treatment of industrial effluents , 1998 .

[47]  J. Carrillo-Rivera,et al.  Importance of the vertical component of groundwater flow: a hydrogeochemical approach in the valley of San Luis Potosi, Mexico , 1996 .

[48]  Hang Shi,et al.  Activated carbons and double layer capacitance , 1996 .

[49]  A. Soffer,et al.  The immersion potential of high surface electrodes , 1983 .

[50]  Hai-fan Wang,et al.  Performance of fluoride electrosorption using micropore-dominant activated carbon as an electrode , 2017 .

[51]  C. Lokhande,et al.  Supercapacitive properties of chemically deposited La2O3 thin film , 2016 .

[52]  A. Afkhami Adsorption and electrosorption of nitrate and nitrite on high-area carbon cloth: an approach to purification of water and waste-water samples , 2003 .

[53]  F. Rodríguez-Reinoso,et al.  The role of carbon materials in heterogeneous catalysis , 1998 .

[54]  A. Pozos,et al.  ENDEMIC FLUOROSIS IN SAN LUIS POTOSI, MEXICO III. SCREENING FOR FLUORIDE EXPOSURE WITH A GEOGRAPHIC INFORMATION SYSTEM , 1997 .