Varieties with quadratic entry locus, I
暂无分享,去创建一个
[1] J. Huizenga. RATIONALLY CONNECTED VARIETIES , 2009 .
[2] F. Russo,et al. Varieties with quadratic entry locus, II , 2007, Compositio Mathematica.
[3] Baohua Fu. Inductive characterizations of hyperquadrics , 2007, 0705.2927.
[4] F. Russo,et al. Conic-connected manifolds , 2007, math/0701885.
[5] Jun-Muk Hwang. Rigidity of rational homogeneous spaces , 2006 .
[6] Takehiko Yasuda,et al. HIGHER DIMENSIONAL ALGEBRAIC GEOMETRY , 2006 .
[7] N. Mok,et al. Prolongations of infinitesimal linear automorphisms of projective varieties and rigidity of rational homogeneous spaces of Picard number 1 under Kähler deformation , 2005 .
[8] Franz Lemmermeyer,et al. Introduction to Algebraic Geometry , 2005 .
[9] Tsit Yuen Lam,et al. Introduction To Quadratic Forms Over Fields , 2004 .
[10] C. Ciliberto,et al. Varieties with minimal secant degree and linear systems of maximal dimension on surfaces , 2004, math/0406494.
[11] Jun-Muk Hwang,et al. Geometry of chains of minimal rational curves , 2004, math/0403352.
[12] N. Mok,et al. Birationality of the tangent map for minimal rational curves , 2003, math/0304101.
[13] Daniel Naie,et al. Rationality properties of manifolds containing quasi-lines , 2003, math/0304006.
[14] M. Mella,et al. VARIETIES WITH ONE APPARENT DOUBLE POINT , 2002, math/0210008.
[15] J. Landsberg. Griffiths-Harris rigidity of compact Hermitian symmetric spaces , 2002, math/0207287.
[16] 可知 靖之,et al. Segre's reflexivity and an inductive characterization of hyperquadrics , 2002 .
[17] P. Vermeire. Some Results on Secant Varieties Leading to a Geometric Flip Construction , 1999, Compositio Mathematica.
[18] H. Kaji,et al. Homogeneous projective varieties with degenerate secants , 1999 .
[19] J. Landsberg. On the Infinitesimal Rigidity of Homogeneous Varieties , 1997, Compositio Mathematica.
[20] M. Ohno. ON DEGENERATE SECANT VARIETIES WHOSE GAUSS MAPS HAVE THE LARGEST IMAGES , 1999 .
[21] N. Mok,et al. Rigidity of irreducible Hermitian symmetric spaces of the compact type under Kähler deformation , 1996, math/9604227.
[22] Mauro C. Beltrametti,et al. The Adjunction Theory of Complex Projective Varieties , 1995 .
[23] Y. Miyaoka. Rational Curves on Algebraic Varieties , 1995 .
[24] J. Landsberg. On Degenerate Secant and Tangential Varieties and Local Differential Geometry , 1994, alg-geom/9412012.
[25] A. Holme,et al. Zak's theorem on superadditivity , 1994 .
[26] F. Zak. Tangents and Secants of Algebraic Varieties , 1993 .
[27] F. Schreyer,et al. Cremona transformations and syzygies , 1992 .
[28] A. Bertram,et al. Vanishing theorems, a theorem of Severi, and the equations defining projective varieties , 1991 .
[29] Paltin Ionescu. Embedded projective varieties of small invariants. III , 1990 .
[30] T. Fujita. Classification Theories of Polarized Varieties , 1990 .
[31] N. Shepherd-barron,et al. SOME SPECIAL CREMONA TRANSFORMATIONS , 1989 .
[32] S. Mukai. Biregular classification of Fano 3-folds and Fano manifolds of coindex 3. , 1989, Proceedings of the National Academy of Sciences of the United States of America.
[33] S. Katz,et al. CREMONA TRANSFORMATIONS WITH SMOOTH IRREDUCIBLE FUNDAMENTAL LOCUS , 1989 .
[34] 森川寿. Biregular classification of Fano three-folds and Fano manifolds of coindex 3 , 1989 .
[35] L. Ein. Vanishing theorems for varieties of low codimension , 1988 .
[36] Lawrence Ein,et al. Varieties with small dual varieties, I , 1986 .
[37] C. Curtis. Linear Algebra: An Introductory Approach , 1984 .
[38] Robert Lazarsfeld,et al. Topics in the Geometry of Projective Space: Recent Work of F.L. Zak , 1984 .
[39] R. Lazarsfeld,et al. Topics in the Geometry of Projective Space , 1984 .
[40] T. Fujita. Projective Threefolds with Small Secant Varieties , 1982 .
[41] Joel L. Roberts,et al. Varieties with Small Secant Varieties: The Extremal Case , 1981 .
[42] Shigefumi Mori,et al. Threefolds Whose Canonical Bundles Are Not Numerically Effective (Recent Topics in Algebraic Geometry) , 1980 .
[43] Shigefumi Mori,et al. Proj ective manifolds with ample tangent bundles , 1979 .
[44] P. Griffiths,et al. Algebraic geometry and local differential geometry , 1979 .
[45] R. Hartshorne. Varieties of small codimension in projective space , 1974 .
[46] W. Barth,et al. On the Homotopy Groups of Complex Projective Algebraic Manifolds. , 1972 .
[47] J. Semple,et al. The T2,4 of S6 Defined by a Rational Surface 3F8 , 1970 .
[48] J. Semple,et al. The Cremona transformation of S 6 by quadrics through a normal elliptic septimic scroll 1 R 7 , 1969 .
[49] J. Semple,et al. Introduction to Algebraic Geometry , 1949 .
[50] J. Bronowski. The sum of powers as canonical expression , 1933, Mathematical Proceedings of the Cambridge Philosophical Society.
[51] Alessandro Terracini,et al. Sulle vk per cui la varietÀ degli sh (h + 1) seganti ha dimensione minore delĽordinario , 1911 .
[52] Gaetano Scorza,et al. Sulle varieà a quattro dimensioni diSr(r≥9) i cui s4 tangenti si tagliano a due a due , 1909 .
[53] Gaetano Scorza,et al. Le varietà a curve sezioni ellittiche , 1908 .
[54] Francesco Severi,et al. Intorno ai punti doppi impropri di una superficie generale dello spazio a quattro dimensioni, e a’ suoi punti tripli apparenti , 1901 .