Varieties with quadratic entry locus, I

[1]  J. Huizenga RATIONALLY CONNECTED VARIETIES , 2009 .

[2]  F. Russo,et al.  Varieties with quadratic entry locus, II , 2007, Compositio Mathematica.

[3]  Baohua Fu Inductive characterizations of hyperquadrics , 2007, 0705.2927.

[4]  F. Russo,et al.  Conic-connected manifolds , 2007, math/0701885.

[5]  Jun-Muk Hwang Rigidity of rational homogeneous spaces , 2006 .

[6]  Takehiko Yasuda,et al.  HIGHER DIMENSIONAL ALGEBRAIC GEOMETRY , 2006 .

[7]  N. Mok,et al.  Prolongations of infinitesimal linear automorphisms of projective varieties and rigidity of rational homogeneous spaces of Picard number 1 under Kähler deformation , 2005 .

[8]  Franz Lemmermeyer,et al.  Introduction to Algebraic Geometry , 2005 .

[9]  Tsit Yuen Lam,et al.  Introduction To Quadratic Forms Over Fields , 2004 .

[10]  C. Ciliberto,et al.  Varieties with minimal secant degree and linear systems of maximal dimension on surfaces , 2004, math/0406494.

[11]  Jun-Muk Hwang,et al.  Geometry of chains of minimal rational curves , 2004, math/0403352.

[12]  N. Mok,et al.  Birationality of the tangent map for minimal rational curves , 2003, math/0304101.

[13]  Daniel Naie,et al.  Rationality properties of manifolds containing quasi-lines , 2003, math/0304006.

[14]  M. Mella,et al.  VARIETIES WITH ONE APPARENT DOUBLE POINT , 2002, math/0210008.

[15]  J. Landsberg Griffiths-Harris rigidity of compact Hermitian symmetric spaces , 2002, math/0207287.

[16]  可知 靖之,et al.  Segre's reflexivity and an inductive characterization of hyperquadrics , 2002 .

[17]  P. Vermeire Some Results on Secant Varieties Leading to a Geometric Flip Construction , 1999, Compositio Mathematica.

[18]  H. Kaji,et al.  Homogeneous projective varieties with degenerate secants , 1999 .

[19]  J. Landsberg On the Infinitesimal Rigidity of Homogeneous Varieties , 1997, Compositio Mathematica.

[20]  M. Ohno ON DEGENERATE SECANT VARIETIES WHOSE GAUSS MAPS HAVE THE LARGEST IMAGES , 1999 .

[21]  N. Mok,et al.  Rigidity of irreducible Hermitian symmetric spaces of the compact type under Kähler deformation , 1996, math/9604227.

[22]  Mauro C. Beltrametti,et al.  The Adjunction Theory of Complex Projective Varieties , 1995 .

[23]  Y. Miyaoka Rational Curves on Algebraic Varieties , 1995 .

[24]  J. Landsberg On Degenerate Secant and Tangential Varieties and Local Differential Geometry , 1994, alg-geom/9412012.

[25]  A. Holme,et al.  Zak's theorem on superadditivity , 1994 .

[26]  F. Zak Tangents and Secants of Algebraic Varieties , 1993 .

[27]  F. Schreyer,et al.  Cremona transformations and syzygies , 1992 .

[28]  A. Bertram,et al.  Vanishing theorems, a theorem of Severi, and the equations defining projective varieties , 1991 .

[29]  Paltin Ionescu Embedded projective varieties of small invariants. III , 1990 .

[30]  T. Fujita Classification Theories of Polarized Varieties , 1990 .

[31]  N. Shepherd-barron,et al.  SOME SPECIAL CREMONA TRANSFORMATIONS , 1989 .

[32]  S. Mukai Biregular classification of Fano 3-folds and Fano manifolds of coindex 3. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[33]  S. Katz,et al.  CREMONA TRANSFORMATIONS WITH SMOOTH IRREDUCIBLE FUNDAMENTAL LOCUS , 1989 .

[34]  森川寿 Biregular classification of Fano three-folds and Fano manifolds of coindex 3 , 1989 .

[35]  L. Ein Vanishing theorems for varieties of low codimension , 1988 .

[36]  Lawrence Ein,et al.  Varieties with small dual varieties, I , 1986 .

[37]  C. Curtis Linear Algebra: An Introductory Approach , 1984 .

[38]  Robert Lazarsfeld,et al.  Topics in the Geometry of Projective Space: Recent Work of F.L. Zak , 1984 .

[39]  R. Lazarsfeld,et al.  Topics in the Geometry of Projective Space , 1984 .

[40]  T. Fujita Projective Threefolds with Small Secant Varieties , 1982 .

[41]  Joel L. Roberts,et al.  Varieties with Small Secant Varieties: The Extremal Case , 1981 .

[42]  Shigefumi Mori,et al.  Threefolds Whose Canonical Bundles Are Not Numerically Effective (Recent Topics in Algebraic Geometry) , 1980 .

[43]  Shigefumi Mori,et al.  Proj ective manifolds with ample tangent bundles , 1979 .

[44]  P. Griffiths,et al.  Algebraic geometry and local differential geometry , 1979 .

[45]  R. Hartshorne Varieties of small codimension in projective space , 1974 .

[46]  W. Barth,et al.  On the Homotopy Groups of Complex Projective Algebraic Manifolds. , 1972 .

[47]  J. Semple,et al.  The T2,4 of S6 Defined by a Rational Surface 3F8 , 1970 .

[48]  J. Semple,et al.  The Cremona transformation of S 6 by quadrics through a normal elliptic septimic scroll 1 R 7 , 1969 .

[49]  J. Semple,et al.  Introduction to Algebraic Geometry , 1949 .

[50]  J. Bronowski The sum of powers as canonical expression , 1933, Mathematical Proceedings of the Cambridge Philosophical Society.

[51]  Alessandro Terracini,et al.  Sulle vk per cui la varietÀ degli sh (h + 1) seganti ha dimensione minore delĽordinario , 1911 .

[52]  Gaetano Scorza,et al.  Sulle varieà a quattro dimensioni diSr(r≥9) i cui s4 tangenti si tagliano a due a due , 1909 .

[53]  Gaetano Scorza,et al.  Le varietà a curve sezioni ellittiche , 1908 .

[54]  Francesco Severi,et al.  Intorno ai punti doppi impropri di una superficie generale dello spazio a quattro dimensioni, e a’ suoi punti tripli apparenti , 1901 .