Plasma processes at atmospheric and low pressures

Abstract In the last few decades there has been an intense development in non-equilibrium (“cold”) plasma surface processing systems at atmospheric pressure. This new trend is stimulated mainly to decrease equipment costs by avoiding expensive pumping systems of conventional low-pressure plasma devices. This work summarizes physical and practical limitations where atmospheric plasmas cannot compete with low-pressure plasma and vice-versa. As the processing conditions for atmospheric plasma are rather different from reduced pressure systems in many cases these conditions may increase final equipment costs substantially. In this work we briefly review the main principles, advantages and drawbacks of atmospheric plasma for a better understanding of the capabilities and limitations of the atmospheric plasma processing technology compared with conventional low-pressure plasma processing.

[1]  Konstantinos P. Giapis,et al.  High-pressure micro-discharges in etching and deposition applications , 2003 .

[2]  H. Barankova,et al.  Cold atmospheric plasma deposition of diamond , 2007 .

[3]  Masuhiro Kogoma,et al.  Appearance of stable glow discharge in air, argon, oxygen and nitrogen at atmospheric pressure using a 50 Hz source , 1993 .

[4]  Kenji Kobayashi,et al.  Plasma sheath thickness in radio-frequency discharges , 1990 .

[5]  M. Kong,et al.  Sheath dynamics in radio-frequency atmospheric glow discharges , 2005, IEEE Transactions on Plasma Science.

[6]  Xin Dai,et al.  The physics and phenomenology of One Atmosphere Uniform Glow Discharge Plasma (OAUGDP™) reactors for surface treatment applications , 2005 .

[7]  Senichi Masuda,et al.  Control of NO/sub x/ by positive and negative pulsed corona discharges , 1990 .

[8]  P. Fauchais,et al.  Plasma—particle momentum and heat transfer: Modelling and measurements , 1983 .

[9]  Masuhiro Kogoma,et al.  Stable glow plasma at atmospheric pressure , 1988 .

[10]  J. Mostaghimi,et al.  Parametric study of the flow and temperature fields in an inductively coupled r.f. plasma torch , 1984 .

[11]  A. Jay Palmer,et al.  A physical model on the initiation of atmospheric‐pressure glow discharges , 1974 .

[12]  F. Weinberg,et al.  Effect of nitrogen-containing plasmas on stability, NO formation and sooting of flames , 1976, Nature.

[13]  H. Störi,et al.  Investigation of an atmospheric pressure radio-frequency capacitive plasma jet , 2005 .

[14]  Paul P. Woskov,et al.  Electronic excitation temperature profiles in an air microwave plasma torch , 2001 .

[15]  D. Cohn Environmental cleanup applications of hot and cold plasmas , 1993 .

[16]  D. Coleman,et al.  Magnetic Confinement and Control of Trajectories of Discharge Species in Atmospheric-Pressure Analytical Spark Discharges , 1987 .

[17]  K. M. Goff,et al.  Hot demonstrations of nuclear-waste processing technologies , 1997 .

[18]  S. Dhali,et al.  CHARACTERISTICS OF A BARRIER DISCHARGE IN MONATOMIC AND MOLECULAR GASES , 1999 .

[19]  F. Paschen,et al.  Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Potentialdifferenz , 1889 .

[20]  H. Barankova,et al.  Hollow cathode plasma sources for large area surface treatment , 2001 .

[21]  H. Barankova,et al.  Cold atmospheric plasma in nitrogen and air generated by the hybrid plasma source , 2006 .

[22]  U. Kogelschatz Dielectric-Barrier Discharges: Their History, Discharge Physics, and Industrial Applications , 2003 .

[23]  Z. Barkay,et al.  Pulsed discharge production of nano- and microparticles in ethanol and their characterization , 2005 .

[24]  L. Bromberg,et al.  Near-term possibilities for extremely low emission vehicles using onboard plasmatron generation of hydrogen , 1997 .

[25]  W. Viöl,et al.  Low Temperature Plasma Treatment of Living Human Cells , 2007 .

[26]  Karl H. Schoenbach,et al.  High-pressure hollow cathode discharges , 1997 .

[27]  H. Barankova,et al.  On Dimensions of Atmospheric-Pressure Hollow Cathodes , 2007, IEEE Transactions on Plasma Science.

[28]  D. W. Sheel,et al.  Atmospheric Pressure Glow Discharge CVD of Al2O3 Thin Films , 2006 .

[29]  L. Mollwo Elektronentemperatur und Elektronenrauschen in der hochfrequenten Fackelentladung , 1958 .

[30]  R. Ono,et al.  Formation and structure of primary and secondary streamers in positive pulsed corona discharge—effect of oxygen concentration and applied voltage , 2003 .

[31]  Maher I. Boulos,et al.  Thermal plasma processing , 1991 .

[32]  H. Barankova,et al.  Fused hollow cathode cold atmospheric plasma , 2000 .

[33]  Mounir Laroussi,et al.  Nonthermal decontamination of biological media by atmospheric-pressure plasmas: review, analysis, and prospects , 2002 .

[34]  S. Moreau,et al.  Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. , 2001, International journal of pharmaceutics.

[35]  K. Tachibana,et al.  Integrated coaxial-hollow micro dielectric-barrier-discharges for a large-area plasma source operating at around atmospheric pressure , 2005 .

[36]  C. Mayoux,et al.  Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier , 1998 .

[37]  Ladislav Bardos,et al.  Hollow cathode cold atmospheric plasma source with monoatomic and molecular gases , 2003 .