Dielectric Effect on the Photovoltage Loss in Organic Photovoltaic Cells

The VOC loss in several polymer-fullerene solar cells is determined. Based on these data, a major source of photovoltage loss is attributed to the low dielectric constants of the polymers. Such loss is close to zero if the dielectric constant of the polymer-fullerene blend is close to 5.

[1]  Amy M. Ballantyne,et al.  Recombination Dynamics as a Key Determinant of Open Circuit Voltage in Organic Bulk Heterojunction Solar Cells: A Comparison of Four Different Donor Polymers , 2010, Advanced materials.

[2]  F. So,et al.  An isoindigo and dithieno[3,2-b:2′,3′-d]silole copolymer for polymer solar cells , 2012 .

[3]  Wei Li,et al.  Electrochemical Considerations for Determining Absolute Frontier Orbital Energy Levels of Conjugated Polymers for Solar Cell Applications , 2011, Advanced materials.

[4]  Stephen R. Forrest,et al.  Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells , 2007 .

[5]  Daniel Moses,et al.  Photoinduced Carrier Generation in P3HT/PCBM Bulk Heterojunction Materials , 2008 .

[6]  John R. Reynolds,et al.  Dithienogermole as a fused electron donor in bulk heterojunction solar cells. , 2011, Journal of the American Chemical Society.

[7]  K. Leo,et al.  Open‐Circuit Voltage and Effective Gap of Organic Solar Cells , 2013 .

[8]  Song Chen,et al.  Inverted Polymer Solar Cells with Reduced Interface Recombination , 2012 .

[9]  N. S. Sariciftci,et al.  Bimolecular recombination coefficient as a sensitive testing parameter for low-mobility solar-cell materials. , 2005, Physical review letters.

[10]  A. Cravino Origin of the open circuit voltage of donor-acceptor solar cells: Do polaronic energy levels play a role? , 2007 .

[11]  Song Chen,et al.  Photo‐Carrier Recombination in Polymer Solar Cells Based on P3HT and Silole‐Based Copolymer , 2011 .

[12]  David Beljonne,et al.  The Role of Driving Energy and Delocalized States for Charge Separation in Organic Semiconductors , 2012, Science.

[13]  Song Chen,et al.  Energy Level Alignment and Sub‐Bandgap Charge Generation in Polymer:Fullerene Bulk Heterojunction Solar Cells , 2013, Advanced materials.

[14]  G. Cerullo,et al.  Hot exciton dissociation in polymer solar cells. , 2013, Nature materials.

[15]  Cherno Jaye,et al.  Direct determination of the electronic structure of the poly(3-hexylthiophene):phenyl-[6,6]-C61 butyric acid methyl ester blend , 2010 .

[16]  O. Inganäs,et al.  Charge-Transfer States and Upper Limit of the Open-Circuit Voltage in Polymer:Fullerene Organic Solar Cells , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[17]  N. Armstrong,et al.  Energy Level Alignment in PCDTBT:PC70BM Solar Cells: Solution Processed NiOx for Improved Hole Collection and Efficiency , 2012 .

[18]  Frédéric Laquai,et al.  Ultrafast exciton dissociation followed by nongeminate charge recombination in PCDTBT:PCBM photovoltaic blends. , 2011, Journal of the American Chemical Society.

[19]  P. Blom,et al.  Unification of the hole transport in polymeric field-effect transistors and light-emitting diodes. , 2003, Physical review letters.

[20]  Juan Bisquert,et al.  Simultaneous determination of carrier lifetime and electron density-of-states in P3HT:PCBM organic solar cells under illumination by impedance spectroscopy , 2010 .

[21]  Tracey M. Clarke,et al.  Non-Langevin bimolecular recombination in a silole-based polymer:PCBM solar cell measured by time-resolved charge extraction and resistance-dependent time-of-flight techniques , 2012 .

[22]  Xiong Gong,et al.  Efficient, Air‐Stable Bulk Heterojunction Polymer Solar Cells Using MoOx as the Anode Interfacial Layer , 2011, Advanced materials.

[23]  N. Stingelin,et al.  A low band gap co-polymer of dithienogermole and 2,1,3-benzothiadiazole by Suzuki polycondensation and its application in transistor and photovoltaic cells , 2011 .

[24]  Jean M. J. Fréchet,et al.  Molecular-weight-dependent mobilities in regioregular poly(3-hexyl-thiophene) diodes , 2005 .

[25]  Aram Amassian,et al.  Efficient charge generation by relaxed charge-transfer states at organic interfaces. , 2014, Nature materials.

[26]  Tracey M. Clarke,et al.  Free Energy Control of Charge Photogeneration in Polythiophene/Fullerene Solar Cells: The Influence of Thermal Annealing on P3HT/PCBM Blends , 2008 .

[27]  Weiser,et al.  Stark effect of one-dimensional Wannier excitons in polydiacetylene single crystals. , 1992, Physical review. B, Condensed matter.

[28]  M. Leclerc,et al.  Synthesis and Photovoltaic Properties of Poly(dithieno[3,2-b:2′,3′-d]germole) Derivatives , 2011 .

[29]  John R. Reynolds,et al.  High-efficiency inverted dithienogermole–thienopyrrolodione-based polymer solar cells , 2011, Nature Photonics.

[30]  Xiaoyang Zhu,et al.  Electronic Structure and Dynamics at Organic Donor/Acceptor Interfaces , 2010 .

[31]  Gang Li,et al.  For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4% , 2010, Advanced materials.

[32]  Mario Leclerc,et al.  A Low‐Bandgap Poly(2,7‐Carbazole) Derivative for Use in High‐Performance Solar Cells , 2007 .

[33]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[34]  Ye Tao,et al.  Bulk heterojunction solar cells using thieno[3,4-c]pyrrole-4,6-dione and dithieno[3,2-b:2',3'-d]silole copolymer with a power conversion efficiency of 7.3%. , 2011, Journal of the American Chemical Society.

[35]  Franky So,et al.  Charge injection and transport studies of poly(2,7-carbazole) copolymer PCDTBT and their relationship to solar cell performance , 2012 .