Teleportation of the one-qubit state with environment-disturbed recovery operations

Abstract We study standard protocol \hbox{$\mathcal{P}_0$} 𝒫0 for teleporting the one-qubit state with both the transmission process of the two qubits constitute the quantum channel and the recovery operations performed by Bob disturbed by the decohering environment. The results revealed that Bob’s imperfect operations do not eliminate the possibility of nonclassical teleportation fidelity provided he shares an ideal channel state with Alice, while the transmission process is constrained by a critical time t0,   c longer than which will result in failure of \hbox{$\mathcal{P}_0$} 𝒫0 if the two qubits are corrupted by the decohering environment. Moreover, we found that under the condition of the same decoherence rate γ, the teleportation protocol is significantly more fragile when it is executed under the influence of the noisy environment than those under the influence of the dissipative and dephasing environments.

[1]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[2]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[3]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[4]  M. Horodecki,et al.  General teleportation channel, singlet fraction and quasi-distillation , 1998, quant-ph/9807091.

[5]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[6]  M. Horodecki,et al.  Local environment can enhance fidelity of quantum teleportation , 1999, quant-ph/9912098.

[7]  Lee,et al.  Entanglement teleportation via werner states , 2000, Physical review letters.

[8]  G. Bowen,et al.  Teleportation as a depolarizing quantum channel, relative entropy, and classical capacity. , 2001, Physical review letters.

[9]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[10]  Soonchil Lee,et al.  Fidelity of quantum teleportation through noisy channels , 2002 .

[11]  F. Verstraete,et al.  Optimal teleportation with a mixed state of two qubits. , 2003, Physical review letters.

[12]  E. Knill,et al.  Deterministic quantum teleportation of atomic qubits , 2004, Nature.

[13]  F. Schmidt-Kaler,et al.  Deterministic quantum teleportation with atoms , 2004, Nature.

[14]  Andreas Buchleitner,et al.  Decoherence and multipartite entanglement. , 2004, Physical review letters.

[15]  T. Yu,et al.  Finite-time disentanglement via spontaneous emission. , 2004, Physical review letters.

[16]  Jin Wang,et al.  Entanglement evolution in the presence of decoherence , 2005, quant-ph/0503116.

[17]  Hongjun Gao,et al.  Entanglement control in an anisotropic two-qubit Heisenberg XYZ model with external magnetic fields , 2006 .

[18]  A. Shabaev,et al.  Mode Locking of Electron Spin Coherences in Singly Charged Quantum Dots , 2006, Science.

[19]  Y. Yeo,et al.  Teleportation and dense coding with genuine multipartite entanglement. , 2005, Physical review letters.

[20]  N. Buric Influence of the thermal environment on entanglement dynamics in small rings of qubits , 2008 .

[21]  DaeKil Park,et al.  Greenberger-Horne-Zeilinger versus W states: Quantum teleportation through noisy channels , 2008 .

[22]  Ye Yeo Local noise can enhance two-qubit teleportation , 2008 .

[23]  P. Panigrahi,et al.  Teleportation in the presence of common bath decoherence at the transmitting station , 2008, 0805.1456.

[24]  DaeKil Park,et al.  Mixed-state entanglement and quantum teleportation through noisy channels , 2008, 0804.4595.

[25]  Xing Rong,et al.  Preserving electron spin coherence in solids by optimal dynamical decoupling , 2009, Nature.

[26]  S. Olmschenk,et al.  Quantum Teleportation Between Distant Matter Qubits , 2009, Science.

[27]  Y. Yeo,et al.  Effects of Pauli channels and noisy quantum operations on standard teleportation , 2009 .