Efficient canonic signed digit recoding

In this work novel-efficient implementations to convert a two’s complement binary number into its canonic signed digit (CSD) representation are presented. In these CSD recoding circuits two signals, H and K, functionally equivalent to two carries are described. They are computed in parallel reducing the critical path and they possess some properties that lead to a simplification of the algebraic expressions minimizing the overall hardware implementation. As a result, the proposed circuits are highly efficient in terms of speed and area in comparison with other counterpart previous architectures. Simulations of different configurations made over standard-cell implementations show an average reduction of about 55% in the delay and 29% in the area for a ripple-carry scheme, 47% in the delay and 17% the area in a carry look-ahead scheme, and 36% in the delay and 31% the area in a parallel prefix scheme.

[1]  Chiang-Ju Chien,et al.  A novel common-subexpression-elimination method for synthesizing fixed-point FIR filters , 2004, IEEE Trans. Circuits Syst. I Regul. Pap..

[2]  G. A. Ruiz,et al.  Self-timed multiplier based on canonical signed-digit recoding , 2001 .

[3]  Mathias Faust,et al.  Fast and VLSI efficient binary-to-CSD encoder using bypass signal , 2011 .

[4]  Davide De Caro,et al.  Fixed-width CSD multipliers with minimum mean square error , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[5]  R. Hashemian A new method for conversion of a 2's complement to canonic signed digit number system and its representation , 1996, Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers.

[6]  Gerald E. Sobelman,et al.  FPGA-based digit-serial CSD FIR filter for image signal format conversion , 2002 .

[7]  Dhananjay S. Phatak,et al.  Hybrid Signed-Digit Number Systems: A Unified Framework for Redundant Number Representations With Bounded Carry Propagation Chains , 1994, IEEE Trans. Computers.

[8]  Mircea Vladutiu,et al.  Computer Arithmetic , 2012, Springer Berlin Heidelberg.

[9]  Sejung Yang,et al.  Efficient transform using canonical signed digit in reversible color transforms , 2009, J. Electronic Imaging.

[10]  Braden Phillips,et al.  Minimal weight digit set conversions , 2004, IEEE Transactions on Computers.

[11]  M. Ronchi,et al.  Binary canonic signed digit multiplier for high-speed digital signal processing , 2004, The 2004 47th Midwest Symposium on Circuits and Systems, 2004. MWSCAS '04..

[12]  Harold S. Stone,et al.  A Parallel Algorithm for the Efficient Solution of a General Class of Recurrence Equations , 1973, IEEE Transactions on Computers.

[13]  George W. Reitwiesner,et al.  Binary Arithmetic , 1960, Adv. Comput..

[14]  An-Yeu Wu,et al.  A unified view for vector rotational CORDIC algorithms and architectures based on angle quantization approach , 2002 .

[15]  F.J. Taylor,et al.  Multiplier policies for digital signal processing , 1990, IEEE ASSP Magazine.

[16]  Dayong Zhou,et al.  A Multiplier Structure Based on a Novel Real-time CSD Recoding , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[17]  Marc Joye,et al.  Optimal Left-to-Right Binary Signed-Digit Recoding , 2000, IEEE Trans. Computers.

[18]  Kai Hwang,et al.  Computer arithmetic: Principles, architecture, and design , 1979 .

[19]  Keshab K. Parhi,et al.  Low error fixed-width CSD multiplier with efficient sign extension , 2003, IEEE Trans. Circuits Syst. II Express Briefs.

[20]  Chip-Hong Chang,et al.  Hamming weight pyramid - A new insight into canonical signed digit representation and its applications , 2007, Comput. Electr. Eng..

[21]  A. Peled On the hardware implementation of digital signal processors , 1976 .

[22]  W. Neville Holmes,et al.  Binary Arithmetic , 2007, Computer.

[23]  Michael A. Soderstrand CSD multipliers for FPGA DSP applications , 2003, Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03..

[24]  A. Herrfeld,et al.  Look-ahead circuit for CSD-code carry determination , 1995 .

[25]  Der-Chyuan Lou,et al.  An efficient Montgomery exponentiation algorithm by using signed-digit-recoding and folding techniques , 2007, Appl. Math. Comput..

[26]  Çetin Kaya Koç Parallel canonical recoding , 1996 .

[27]  Shing-Tai Pan,et al.  A canonic-signed-digit coded genetic algorithm for designing finite impulse response digital filter , 2010, Digit. Signal Process..

[28]  Argyrides Costas,et al.  Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS) , 2007 .

[29]  W. C. Miller,et al.  Design of 2D FIR and IIR Digital Filters with Canonical Signed Digit Coefficients Using Singular Value Decomposition and Genetic Algorithms , 2007 .

[30]  Oscar Gustafsson,et al.  Bidirectional conversion to minimum signed-digit representation , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[31]  A. Dempster,et al.  Common subexpression elimination algorithm for low-cost multiplierless implementation of matrix multipliers , 2004 .

[32]  L.J. Karam,et al.  Canonic signed digit Chebyshev FIR filter design , 2001, IEEE Signal Processing Letters.

[33]  Gustavo A. Ruiz,et al.  Efficient implementation of 3X for radix-8 encoding , 2008, Microelectron. J..

[34]  Earl E. Swartzlander,et al.  Computer Arithmetic , 1980 .

[35]  Sajal K. Das,et al.  Fast VLSI circuits for CSD coding and GNAF coding , 1996 .

[36]  Tsuyoshi Takagi,et al.  Signed Binary Representations Revisited , 2004, CRYPTO.

[37]  A. Willson,et al.  A programmable FIR digital filter using CSD coefficients , 1996 .

[38]  Israel Koren Computer arithmetic algorithms , 1993 .

[39]  Tomás Lang,et al.  Digit-Serial Arithmetic , 2004 .

[40]  R. Hartley Subexpression sharing in filters using canonic signed digit multipliers , 1996 .

[41]  Stephen P. Boyd,et al.  Filter Design With Low Complexity Coefficients , 2008, IEEE Transactions on Signal Processing.