Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends

Incomplete global coverage is a potential source of bias in global temperature reconstructions if the unsampled regions are not uniformly distributed over the planet's surface. The widely used Hadley Centre–Climatic Reseach Unit Version 4 (HadCRUT4) dataset covers on average about 84% of the globe over recent decades, with the unsampled regions being concentrated at the poles and over Africa. Three existing reconstructions with near‐global coverage are examined, each suggesting that HadCRUT4 is subject to bias due to its treatment of unobserved regions.

[1]  Axel Schweiger,et al.  Evaluation of Seven Different Atmospheric Reanalysis Products in the Arctic , 2014 .

[2]  Claude N. Williams,et al.  Quantifying the effect of urbanization on U.S. Historical Climatology Network temperature records , 2013 .

[3]  I. Simmonds,et al.  Half-century air temperature change above Antarctica: Observed trends and spatial reconstructions , 2012 .

[4]  P. Jones,et al.  Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set , 2012 .

[5]  Peter W. Thorne,et al.  Benchmarking the performance of pairwise homogenization of surface temperatures in the United States , 2012 .

[6]  O. Boucher,et al.  High predictive skill of global surface temperature a year ahead , 2011 .

[7]  Claude N. Williams,et al.  An overview of the Global Historical Climatology Network monthly mean temperature data set, version 3 , 2011 .

[8]  Aixue Hu,et al.  Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods , 2011 .

[9]  John Kennedy,et al.  Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 2. Biases and homogenization , 2011 .

[10]  Heikki Kauppi,et al.  Reconciling anthropogenic climate change with observed temperature 1998–2008 , 2011, Proceedings of the National Academy of Sciences.

[11]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[12]  Thorsten Markus,et al.  Observations of Recent Arctic Sea Ice Volume Loss and Its Impact on Ocean-Atmosphere Energy Exchange and Ice Production , 2011 .

[13]  J. Hansen,et al.  GLOBAL SURFACE TEMPERATURE CHANGE , 2010 .

[14]  M. Latif,et al.  The Impact of North Atlantic–Arctic Multidecadal Variability on Northern Hemisphere Surface Air Temperature , 2010 .

[15]  Dick Dee,et al.  Low‐frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from reanalyses and monthly gridded observational data sets , 2010 .

[16]  S. Gerland,et al.  Climate Change and the Cryosphere : Snow, Water, Ice and Permafrost in the Arctic - SWIPA , 2009 .

[17]  Carl A. Mears,et al.  Construction of the Remote Sensing Systems V3.2 Atmospheric Temperature Records from the MSU and AMSU Microwave Sounders , 2009 .

[18]  P. Jones,et al.  The Twentieth Century Reanalysis Project , 2009 .

[19]  John M. Wallace,et al.  A large discontinuity in the mid-twentieth century in observed global-mean surface temperature , 2008, Nature.

[20]  Thomas M. Smith,et al.  Improvements to NOAA’s Historical Merged Land–Ocean Surface Temperature Analysis (1880–2006) , 2008 .

[21]  John R. Christy,et al.  Tropospheric temperature change since 1979 from tropical radiosonde and satellite measurements , 2007 .

[22]  J. Hansen,et al.  Global temperature change , 2006, Proceedings of the National Academy of Sciences.

[23]  Vincent R. Gray Temperature Trends in the Lower Atmosphere , 2006 .

[24]  P. Jones,et al.  Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850 , 2006 .

[25]  S. Hassol,et al.  Temperature Trends in the Lower Atmosphere: Steps for Understanding and Reconciling Differences , 2006 .

[26]  Matthias C. Schabel,et al.  A Reanalysis of the MSU Channel 2 Tropospheric Temperature Record , 2003 .

[27]  Elizabeth C. Kent,et al.  Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century , 2003 .

[28]  P. Jones,et al.  Hemispheric and Large-Scale Surface Air Temperature Variations: An Extensive Revision and an Update to 2001. , 2003 .

[29]  Seelye Martin,et al.  Variations in Surface Air Temperature Observations in the Arctic, 1979-97. , 2000 .

[30]  Per Capita,et al.  About the authors , 1995, Machine Vision and Applications.

[31]  N. Cressie The origins of kriging , 1990 .

[32]  J. Christy,et al.  Precise Monitoring of Global Temperature Trends from Satellites , 1990, Science.

[33]  Barry ATMOSPHERE WEATHER & CLIMATE , 1988 .

[34]  Robert F. Madgic A Model , 1981 .

[35]  J. Curry,et al.  Berkeley Earth Temperature Averaging Process , 2013 .

[36]  J. Wurtele,et al.  A New Estimate of the AverageEarth Surface Land TemperatureSpanning 1753 to 2011 , 2013 .

[37]  J. Wurtele,et al.  A New Estimate of the Average Earth Surface Land Temperature , 2012 .

[38]  Stefan Rahmstorf,et al.  Global temperature evolution 1979–2010 , 2011 .

[39]  D. Parker,et al.  Correction of instrumental biases in historical sea surface temperature data , 1995 .