The analytical solution and numerical solution of the fractional diffusion-wave equation with damping

Fractional partial differential equations have been applied to many problems in physics, finance, and engineering. Numerical methods and error estimates of these equations are currently a very active area of research. In this paper we consider a fractional diffusionwave equation with damping. We derive the analytical solution for the equation using the method of separation of variables. An implicit difference approximation is constructed. Stability and convergence are proved by the energy method. Finally, two numerical examples are presented to show the effectiveness of this approximation.

[1]  R. Nigmatullin The Realization of the Generalized Transfer Equation in a Medium with Fractal Geometry , 1986, January 1.

[2]  Fawang Liu,et al.  An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation , 2010 .

[3]  Om P. Agrawal,et al.  Response of a diffusion‐wave system subjected to deterministic and stochastic fields , 2003 .

[4]  Zhi‐zhong Sun,et al.  A fully discrete difference scheme for a diffusion-wave system , 2006 .

[5]  Kingkaeo. Chanasar Numerical methods of approximating solutions of differential equations. , 1987 .

[6]  F. B. The Theory of Linear Operators: , 1937, Nature.

[7]  R. Gorenflo,et al.  Time Fractional Diffusion: A Discrete Random Walk Approach , 2002 .

[8]  I. Podlubny Fractional differential equations , 1998 .

[9]  Lionel Vaux,et al.  Convolution λ̅μ-Calculus , 2007, TLCA.

[10]  Om P. Agrawal,et al.  A general solution for a fourth-order fractional diffusion–wave equation defined in a bounded domain , 2001 .

[11]  Fawang Liu,et al.  Numerical Methods for the Variable-Order Fractional Advection-Diffusion Equation with a Nonlinear Source Term , 2009, SIAM J. Numer. Anal..

[12]  Fawang Liu,et al.  Numerical solution of the space fractional Fokker-Planck equation , 2004 .

[13]  Fawang Liu,et al.  THE FUNDAMENTAL AND NUMERICAL SOLUTIONS OF THE RIESZ SPACE-FRACTIONAL REACTION–DISPERSION EQUATION , 2008, The ANZIAM Journal.

[14]  Yuriy Povstenko,et al.  Signaling problem for time-fractional diffusion-wave equation in a half-space in the case of angular symmetry , 2010 .

[15]  T. Kosztołowicz,et al.  Subdiffusion in a system with a thick membrane , 2008 .

[16]  Yuri Luchko,et al.  Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation , 2011, 1111.2961.

[17]  Fawang Liu,et al.  Analytical solution for the time-fractional telegraph equation by the method of separating variables , 2008 .

[18]  Fawang Liu,et al.  New Solution and Analytical Techniques of the Implicit Numerical Method for the Anomalous Subdiffusion Equation , 2008, SIAM J. Numer. Anal..

[19]  S. Wearne,et al.  Fractional Reaction-Diffusion , 2000 .

[20]  R. Nigmatullin To the Theoretical Explanation of the “Universal Response” , 1984 .

[21]  Fawang Liu,et al.  Numerical Schemes with High Spatial Accuracy for a Variable-Order Anomalous Subdiffusion Equation , 2010, SIAM J. Sci. Comput..

[22]  R. Gorenflo,et al.  Discrete random walk models for space-time fractional diffusion , 2002, cond-mat/0702072.

[23]  Nikolai Leonenko,et al.  Harmonic analysis of random fractional diffusion-wave equations , 2003, Appl. Math. Comput..

[24]  R. Gorenflo,et al.  AN OPERATIONAL METHOD FOR SOLVING FRACTIONAL DIFFERENTIAL EQUATIONS WITH THE CAPUTO DERIVATIVES , 1999 .

[25]  William McLean,et al.  A second-order accurate numerical method for a fractional wave equation , 2006, Numerische Mathematik.

[26]  I. Turner,et al.  Numerical methods for fractional partial differential equations with Riesz space fractional derivatives , 2010 .

[27]  Fawang Liu,et al.  Finite difference methods and a fourier analysis for the fractional reaction-subdiffusion equation , 2008, Appl. Math. Comput..

[28]  F. Mainardi,et al.  The fundamental solution of the space-time fractional diffusion equation , 2007, cond-mat/0702419.

[29]  L. Beghin,et al.  Time-fractional telegraph equations and telegraph processes with brownian time , 2004 .

[30]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[31]  Boris Baeumer,et al.  Particle tracking for time-fractional diffusion. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  Yury F. Luchko Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation , 2011 .

[33]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[34]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[35]  Enzo Orsingher,et al.  THE SPACE-FRACTIONAL TELEGRAPH EQUATION AND THE RELATED FRACTIONAL TELEGRAPH PROCESS , 2003 .

[36]  R. Gorenflo,et al.  Wright functions as scale-invariant solutions of the diffusion-wave equation , 2000 .

[37]  Fawang Liu,et al.  Numerical simulation for the 3D seepage flow with fractional derivatives in porous media , 2008 .