Biomass estimation with high resolution satellite images: A case study of Quercus rotundifolia

Forest biomass has had a growing importance in the world economy as a global strategic reserve, due to applications in bioenergy, bioproduct development and issues related to reducing greenhouse gas emissions. Current techniques used for forest inventory are usually time consuming and expensive. Thus, there is an urgent need to develop reliable, low cost methods that can be used for forest biomass estimation and monitoring. This study uses new techniques to process high spatial resolution satellite images (0.70 m) in order to assess and monitor forest biomass. Multi-resolution segmentation method and object oriented classification are used to obtain the area of tree canopy horizontal projection for Quercus rotundifolia. Forest inventory allows for calculation of tree and canopy horizontal projection and biomass, the latter with allometric functions. The two data sets are used to develop linear functions to assess above ground biomass, with crown horizontal projection as an independent variable. The functions for the cumulative values, both for inventory and satellite data, for a prediction error equal or smaller than the Portuguese national forest inventory (7%), correspond to stand areas of 0.5 ha, which include most of the Q. rotundifolia stands. 2014 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

[1]  D. Lu The potential and challenge of remote sensing‐based biomass estimation , 2006 .

[2]  Merja Halme,et al.  Improving the accuracy of multisource forest inventory estimates to reducing plot location error — a multicriteria approach , 2001 .

[3]  S. Popescu,et al.  Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass , 2003 .

[4]  I. Stupak,et al.  Above-ground biomass functions for Scots pine in Lithuania. , 2007 .

[5]  C. Oliver,et al.  Forest stand dynamics: updated edition. , 1996 .

[6]  M. Maltamo,et al.  The k-MSN method for the prediction of species-specific stand attributes using airborne laser scanning and aerial photographs , 2007 .

[7]  R. Dubayah,et al.  Estimation of tropical forest structural characteristics using large-footprint lidar , 2002 .

[8]  M. Keller,et al.  Amazon Forest Structure from IKONOS Satellite Data and the Automated Characterization of Forest Canopy Properties , 2008 .

[9]  Xiaowen Li,et al.  Inversion of the Li-Strahler canopy reflectance model for mapping forest structure , 1997, IEEE Trans. Geosci. Remote. Sens..

[10]  Kunkel Jm,et al.  Spontaneous subclavain vein thrombosis: a successful combined approach of local thrombolytic therapy followed by first rib resection. , 1989 .

[11]  J. Heiskanen,et al.  Biomass estimation over a large area based on standwise forest inventory data and ASTER and MODIS satellite data: A possibility to verify carbon inventories , 2007 .

[12]  M. Steininger Satellite estimation of tropical secondary forest above-ground biomass: Data from Brazil and Bolivia , 2000 .

[13]  M. Nilsson,et al.  Regional forest biomass and wood volume estimation using satellite data and ancillary data , 1999 .

[14]  R. L. Bailey,et al.  Height-diameter models for tropical forests on Hainan Island in southern China , 1998 .

[15]  L. F. Watzlawick,et al.  ESTIMATIVA DE BIOMASSA E CARBONO EM PLANTIOS DE PINUS TAEDA L. UTILIZANDO IMAGENS DO SATÉLITE IKONOS II , 2006 .

[16]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[17]  Theo Verwijst,et al.  Above-ground biomass assessments and first cutting cycle production in willow (Salix sp.) coppice¿a comparison between destructive and non-destructive methods , 2004 .

[18]  Lawrence P. Abrahamson,et al.  Development and validation of aboveground biomass estimations for four Salix clones in central New York. , 2007 .

[19]  Theo Verwijst,et al.  Biomass estimation procedures in short rotation forestry , 1999 .

[20]  Mats Nilsson,et al.  Simultaneous use of Landsat-TM and IRS-1C WiFS data in estimating large area tree stem volume and aboveground biomass , 2002 .

[21]  Alan H. Strahler,et al.  Deriving and validating Leaf Area Index (LAI) at multiple spatial scales through lidar remote sensing: a case study in Sierra National Forest, CA , 2014 .

[22]  Giles M. Foody,et al.  Mapping the biomass of Bornean tropical rain forest from remotely sensed data , 2001 .

[23]  Warren B. Cohen,et al.  Estimation of crown biomass of Pinus pinaster stands and shrubland above-ground biomass using forest inventory data, remotely sensed imagery and spatial prediction models , 2012 .

[24]  R. Mickler,et al.  Regional estimation of current and future forest biomass. , 2002, Environmental pollution.

[25]  R. Navarro,et al.  Estimation of above-ground biomass in naturally occurring populations of Prosopis pallida (H. & B. ex. Willd.) H.B.K. in the north of Peru , 2004 .

[26]  J. Carreiras,et al.  Estimation of tree canopy cover in evergreen oak woodlands using remote sensing , 2006 .

[27]  Arief Wijaya,et al.  Improved strategy for estimating stem volume and forest biomass using moderate resolution remote sensing data and GIS , 2010, Journal of Forestry Research.

[28]  Joachim Saborowski,et al.  Allometric equations for biomass estimations in Cameroon and pan moist tropical equations including biomass data from Africa , 2010 .

[29]  R. Dubayah,et al.  Large-scale retrieval of leaf area index and vertical foliage profile from the spaceborne waveform lidar (GLAS/ICESat) , 2014 .

[30]  Lawrence P. Abrahamson,et al.  The development of short-rotation willow in the northeastern United States for bioenergy and bioproducts, agroforestry and phytoremediation , 2006 .

[31]  Lutz Fehrmann,et al.  General considerations about the use of allometric equations for biomass estimation on the example of Norway spruce in central Europe , 2006 .

[32]  L. Tian,et al.  A review of remote sensing methods for biomass feedstock production. , 2011 .

[33]  C. Woodcock,et al.  Forest biomass estimation over regional scales using multisource data , 2004 .

[34]  Erxue Chen,et al.  Above-Ground Biomass and Biomass Components Estimation Using LiDAR Data in a Coniferous Forest , 2013 .

[35]  B. Parresol,et al.  Additivity in tree biomass components of Pyrenean oak (Quercus pyrenaica Willd.) , 2003 .

[36]  B. Griscom,et al.  Biomass estimations and carbon stock calculations in the oil palm plantations of African derived savannas using IKONOS data , 2004 .

[37]  Zhanqing Li,et al.  Estimating fire-related parameters in boreal forest using SPOT VEGETATION , 2002 .

[38]  Brendan Mackey,et al.  Estimating forest biomass using satellite radar: an exploratory study in a temperate Australian Eucalyptus forest , 2003 .

[39]  John R. Jensen,et al.  Introductory Digital Image Processing: A Remote Sensing Perspective , 1986 .

[40]  Doadi Antonio Brena,et al.  Inventario florestal nacional , 2013 .

[41]  M.S. Patricio,et al.  Biomass Equations for Castanea sativa High Forest in the Northwest of Portugal , 2004 .

[42]  Hideki Saito,et al.  Estimation of biomass of a mountainous tropical forest using Landsat TM data , 2003 .

[43]  Kaj Andersson,et al.  A new methodology for the estimation of biomass of coniferdominated boreal forest using NOAA AVHRR data , 1997 .

[44]  Laura Hoch,et al.  Introductory Digital Image Processing , 2016 .

[45]  M. Tomé,et al.  Ajustamento Simultâneo de Equações de Biomassa de Pinheiro Manso no Sul de Portugal , 2008 .

[46]  M. Tomé,et al.  Equações para estimação do volume e biomassa de duas espécies de carvalhos: Quercus suber e Quercus ilex , 2006 .

[47]  Benito Valdés Castrillón,et al.  Flora vascular de Andalucía occidental. 2 , 1987 .

[48]  Erik Næsset,et al.  Advances and emerging issues in national forest inventories , 2010 .

[49]  J. Pulliainen,et al.  Radar-based forest biomass estimation , 1994 .

[50]  E. Tomppo,et al.  The Finnish National Forest Inventory , 1995 .

[51]  G. Foody,et al.  Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions , 2003 .

[52]  A. Beaudoin,et al.  A shadow fraction method for mapping biomass of northern boreal black spruce forests using QuickBird imagery , 2007 .

[53]  M. Keller,et al.  Biomass estimation in the Tapajos National Forest, Brazil: Examination of sampling and allometric uncertainties , 2001 .

[54]  Andrew K. Skidmore,et al.  The potential of spectral mixture analysis to improve the estimation accuracy of tropical forest biomass , 2012 .

[55]  J. Calvo-Alvarado,et al.  Productivity, aboveground biomass, nutrient uptake and carbon content in fast-growing tree plantations of native and introduced species in the Southern Region of Costa Rica , 2011 .

[56]  Ajit,et al.  Predictive models for dry weight estimation of above and below ground biomass components of Populus deltoides in India: Development and comparative diagnosis , 2011 .

[57]  W. Salas,et al.  Secondary Forest Age and Tropical Forest Biomass Estimation Using Thematic Mapper Imagery , 2000 .

[58]  Thomas R. Crow,et al.  Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA , 2004 .

[59]  Bruce C. Larson,et al.  Forest Stand Dynamics , 1990 .

[60]  R. Ceulemans,et al.  Effects of environment and progeny on biomass estimations of five hybrid poplar families grown at three contrasting sites across Europe , 2007 .

[61]  D. Lu Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon , 2005 .

[62]  Jose M. Cardoso Pereira,et al.  An assessment of vegetation fire in Africa (1981–1991): Burned areas, burned biomass, and atmospheric emissions , 1999 .

[63]  I. S. Regina Biomass estimation and nutrient pools in four Quercus pyrenaica in Sierra de Gata Mountains, Salamanca, Spain , 2000 .

[64]  R. H. Myers Classical and modern regression with applications , 1986 .

[65]  Jorge M. Palmeirim,et al.  Mapping Mediterranean scrub with satellite imagery: biomass estimation and spectral behaviour , 2004 .

[66]  P. S. Roy,et al.  Biomass estimation using satellite remote sensing data—An investigation on possible approaches for natural forest , 1996, Journal of Biosciences.

[67]  Åsa Persson,et al.  Species identification of individual trees by combining high resolution LiDAR data with multi‐spectral images , 2008 .