A Maximum Entropy-least Squares Estimator for Elastic Origin-Destination Trip Matrix Estimation

In transportation subnetwork–supernetwork analysis, it is well known that the origin–destination (O–D) flow table of a subnetwork is not only determined by trip generation and distribution, but also a result from traffic routing and diversion, due to the existence of internal–external, external–internal and external–external flows. This result indicates the variable nature of subnetwork O–D flows. This paper discusses an elastic O–D flow table estimation problem for subnetwork analysis. The underlying assumption is that each cell of the subnetwork O–D flow table contains an elastic demand function rather than a fixed demand rate and the demand function can capture all traffic diversion effect under various network changes. We propose a combined maximum entropy-least squares estimator, by which O–D flows are distributed over the subnetwork in terms of the maximum entropy principle, while demand function parameters are estimated for achieving the least sum of squared estimation errors. While the estimator is powered by the classic convex combination algorithm, computational difficulties emerge within the algorithm implementation until we incorporate partial optimality conditions and a column generation procedure into the algorithmic framework. Numerical results from applying the combined estimator to a couple of subnetwork examples show that an elastic O–D flow table, when used as input for subnetwork flow evaluations, reflects network flow changes significantly better than its fixed counterpart.

[1]  William H. K. Lam,et al.  Estimation of an origin-destination matrix with random link choice proportions : a statistical approach , 1996 .

[2]  Hai Yang,et al.  The equilibrium-based origin-destination matrix estimation problem , 1994 .

[3]  Torbjörn Larsson,et al.  Most Likely Traffic Equilibrium Route Flows Analysis and Computation , 2001 .

[4]  M.G.H. Bell Variances and covariances for origin-destination flows when estimated by log-linear models , 1985 .

[5]  Stephen D. Boyles,et al.  Bush-based sensitivity analysis for approximating subnetwork diversion , 2012 .

[6]  Malachy Carey,et al.  Constrained Estimation of Direct Demand Functions and Trip Matrices , 1986, Transp. Sci..

[7]  Sang Nguyen,et al.  Modéles De Distribution Spatiale Tenant Compte Des ItinéRaires , 1983 .

[8]  Stephen D Boyles Subnetwork Trip Table Generation with Bush-Based Sensitivity Analysis , 2011 .

[9]  Y. J. Lee,et al.  Equilibrium Traffic Assignment on an Aggregated Highway Network for Sketch Planning , 2022 .

[10]  Nesa L'abbe Wu,et al.  Linear programming and extensions , 1981 .

[11]  Yupo Chan,et al.  A method to simplify network representation in transportation planning , 1976 .

[12]  S. McNeil,et al.  ENTROPY MODEL FOR CONSISTENT IMPACT-FEE ASSESSMENT , 1989 .

[13]  Sue McNeil,et al.  A Regression Formulation of the Matrix Estimation Problem , 1985, Transp. Sci..

[14]  Byron J. Gajewski,et al.  Robust Estimation of Origin-Destination Matrices , 2002 .

[15]  William Young,et al.  PC-based sketch planning methods for transport and urban applications , 1987 .

[16]  H. M. Zhang,et al.  Inferring origin–destination trip matrices with a decoupled GLS path flow estimator , 2005 .

[17]  D W Hearn PRACTICAL AND THEORETICAL ASPECTS OF AGGREGATION PROBLEMS IN TRANSPORTATION PLANNING MODELS , 1984 .

[18]  M. Maher INFERENCES ON TRIP MATRICES FROM OBSERVATIONS ON LINK VOLUMES: A BAYESIAN STATISTICAL APPROACH , 1983 .

[19]  Mark A. Turnquist,et al.  ESTIMATION OF TRIP TABLES FROM OBSERVED LINK VOLUMES , 1979 .

[20]  Anant D Vyas,et al.  SKETCH-PLANNING MODEL FOR URBAN TRANSPORTATION POLICY ANALYSIS , 1984 .

[21]  Hai Yang,et al.  Estimation of origin-destination matrices from link traffic counts on congested networks , 1992 .

[22]  Alan Wilson,et al.  Entropy in urban and regional modelling , 1972, Handbook on Entropy, Complexity and Spatial Dynamics.

[23]  Malachy Carey,et al.  A Method for Direct Estimation of Origin/Destination Trip Matrices , 1981 .

[24]  P. Pardalos,et al.  Equilibrium problems : nonsmooth optimization and variational inequality models , 2004 .

[25]  Mark S. Daskin,et al.  Aggregation effects on the network design problem , 1986 .

[26]  Michael G.H. Bell,et al.  The Estimation of an Origin-Destination Matrix from Traffic Counts , 1983 .

[27]  Hani S. Mahmassani,et al.  Dynamic origin-destination trip demand estimation for subarea analysis , 2006 .

[28]  M. Florian Transportation planning models , 1984 .

[29]  Richard G Dowling,et al.  COMPARISON OF SMALL-AREA OD ESTIMATION TECHNIQUES , 1985 .

[30]  Henk J van Zuylen,et al.  The most likely trip matrix estimated from traffic counts , 1980 .

[31]  H. Spiess A MAXIMUM LIKELIHOOD MODEL FOR ESTIMATING ORIGIN-DESTINATION MATRICES , 1987 .

[32]  Hai Yang,et al.  An analysis of the reliability of an origin-destination trip matrix estimated from traffic counts , 1991 .

[33]  Bruce N. Janson,et al.  Most likely origin-destination link uses from equilibrium assignment , 1993 .

[34]  Richard Bellman,et al.  ON A ROUTING PROBLEM , 1958 .

[35]  Stephen J. Garland,et al.  Algorithm 97: Shortest path , 1962, Commun. ACM.

[36]  Hillel Bar-Gera,et al.  Primal Method for Determining the Most Likely Route Flows in Large Road Networks , 2006, Transp. Sci..

[37]  S Nguyen,et al.  ESTIMATING ORIGIN DESTINATION MATRICES FROM OBSERVED FLOWS , 1984 .

[38]  C. S. Fisk,et al.  ON COMBINING MAXIMUM ENTROPY TRIP MATRIX ESTIMATION WITH USER OPTIMAL ASSIGNMENT , 1988 .

[39]  Anthony Chen,et al.  Norm approximation method for handling traffic count inconsistencies in path flow estimator , 2009 .

[40]  S. McNeil,et al.  MATRIX ENTRY ESTIMATION ERRORS , 1984 .

[41]  Philip Wolfe,et al.  An algorithm for quadratic programming , 1956 .

[42]  Kara M. Kockelman,et al.  Maximum Entropy Method for Subnetwork Origin–Destination Trip Matrix Estimation , 2010 .

[43]  Yupo Chan,et al.  TRANSPORTATION-NETWORK DESIGN PROBLEM: APPLICATION OF A HIERARCHICAL SEARCH ALGORITHM , 1989 .

[44]  Mark S. Daskin,et al.  NETWORK DESIGN APPLICATION OF AN EXTRACTION ALGORITHM FOR NETWORK AGGREGATION. , 1983 .

[45]  Larry J. LeBlanc,et al.  Selection of a trip table which reproduces observed link flows , 1982 .

[46]  E. Cascetta Estimation of trip matrices from traffic counts and survey data: A generalized least squares estimator , 1984 .

[47]  R. Sivanandan,et al.  A linear programming approach for synthesizing origin-destination trip tables from link traffic volumes , 1994 .

[48]  Hanif D. Sherali,et al.  Linear Programming and Network Flows , 1977 .

[49]  H. M. Zhang,et al.  A Relaxation Approach for Estimating Origin–Destination Trip Tables , 2010 .

[50]  Der-Horng Lee,et al.  Uncoupled Method for Equilibrium-Based Linear Path Flow Estimator for Origin-Destination Trip Matrices , 2002 .

[51]  Luis G. Willumsen,et al.  Simplified transport models based on traffic counts , 1981 .