Design and Analysis of Efficient Parallel Bayesian Model Comparison Algorithms
暂无分享,去创建一个
[1] A. Pettitt,et al. Marginal likelihood estimation via power posteriors , 2008 .
[2] E. T. Jaynes,et al. How Does the Brain Do Plausible Reasoning , 1988 .
[3] Rong Chen,et al. A Theoretical Framework for Sequential Importance Sampling with Resampling , 2001, Sequential Monte Carlo Methods in Practice.
[4] J. Aczél,et al. Lectures on Functional Equations and Their Applications , 1968 .
[5] G. Pólya. Mathematics and Plausible Reasoning , 1958 .
[6] P. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .
[7] C. D. Gelatt,et al. Optimization by Simulated Annealing , 1983, Science.
[8] A. Khachaturyan,et al. Statistical mechanics approach to the structure determination of a crystal , 1985 .
[9] Y. Ogata. A Monte Carlo method for high dimensional integration , 1989 .
[10] James M. Kang,et al. Space-Filling Curves , 2017, Encyclopedia of GIS.
[11] Sheldon M. Ross,et al. Introduction to probability models , 1975 .
[12] Brendon J. Brewer,et al. Diffusive nested sampling , 2009, Stat. Comput..
[13] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[14] J. Skilling. Bayesian computation in big spaces-nested sampling and Galilean Monte Carlo , 2012 .
[15] David L Wild,et al. Exploring the energy landscapes of protein folding simulations with Bayesian computation. , 2010, Biophysical journal.
[16] Radford M. Neal. MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.
[17] Xiao-Li Meng,et al. Simulating Normalizing Constants: From Importance Sampling to Bridge Sampling to Path Sampling , 1998 .
[18] G. L. Bretthorst,et al. Nonuniform sampling: Bandwidth and aliasing , 2001 .
[19] Marvin H. J. Guber. Bayesian Spectrum Analysis and Parameter Estimation , 1988 .
[20] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[21] Mark A. Girolami,et al. Estimating Bayes factors via thermodynamic integration and population MCMC , 2009, Comput. Stat. Data Anal..
[22] Jiqiang Guo,et al. Stan: A Probabilistic Programming Language. , 2017, Journal of statistical software.
[23] Andrew Gelman,et al. The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..
[24] Dominicus Kester,et al. BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING , 2010 .
[25] F. Feroz,et al. MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.
[26] M. Tribus,et al. Probability theory: the logic of science , 2003 .
[27] Mark Girolami,et al. The Controlled Thermodynamic Integral for Bayesian Model Evidence Evaluation , 2016 .
[28] Radford M. Neal. Slice Sampling , 2003, The Annals of Statistics.
[29] Using the Z-Order Curve for Bayesian Model Comparison , 2017 .
[30] S. Dreyfus,et al. Thermodynamical Approach to the Traveling Salesman Problem : An Efficient Simulation Algorithm , 2004 .
[31] A. Lasenby,et al. polychord: next-generation nested sampling , 2015, 1506.00171.
[32] Lei Cao,et al. Combined-chain nested sampling for efficient Bayesian model comparison , 2017, Digit. Signal Process..
[33] Doreen Eichel,et al. Data Analysis A Bayesian Tutorial , 2016 .
[34] J. Kirkwood. Statistical Mechanics of Fluid Mixtures , 1935 .
[35] Kenneth Dixon,et al. Introduction to Stochastic Modeling , 2011 .
[36] Zbigniew J. Czech,et al. Introduction to Parallel Computing , 2017 .
[37] Walter R. Gilks,et al. Bayesian model comparison via jump diffusions , 1995 .
[38] Radford M. Neal. Probabilistic Inference Using Markov Chain Monte Carlo Methods , 2011 .
[39] J. Skilling. Nested sampling for general Bayesian computation , 2006 .
[40] H. Tijms. A First Course in Stochastic Models , 2003 .
[41] John Skilling. Programming the Hilbert curve , 2004 .
[42] Paul M. Goggans,et al. Parallelized nested sampling , 2014 .
[43] P. Goggans,et al. Using Thermodynamic Integration to Calculate the Posterior Probability in Bayesian Model Selection Problems , 2004 .
[44] B. L. Burrows,et al. A New Approach to Numerical Integration , 1980 .
[45] L. Connors,et al. The Washington Post , 2003 .
[46] R. T. Cox. Probability, frequency and reasonable expectation , 1990 .
[47] P. Gregory. Bayesian Logical Data Analysis for the Physical Sciences: The how-to of Bayesian inference , 2005 .