Ripple Distribution for Nonlinear Fibre-Optic Channels

We demonstrate data rates above the threshold imposed by nonlinearity on conventional optical signals by applying novel probability distribution, which we call ripple distribution, adapted to the properties of the fiber channel. Our results offer a new direction for signal coding, modulation and practical nonlinear distortions compensation algorithms.

[1]  E. Forestieri,et al.  Achievable Information Rate in Nonlinear WDM Fiber-Optic Systems With Arbitrary Modulation Formats and Dispersion Maps , 2013, Journal of Lightwave Technology.

[2]  Polina Bayvel,et al.  Sensitivity Gains by Mismatched Probabilistic Shaping for Optical Communication Systems , 2015, IEEE Photonics Technology Letters.

[3]  S K Turitsyn,et al.  Regeneration limit of classical Shannon capacity. , 2014, Nature communications.

[4]  Sergio Verdú,et al.  A general formula for channel capacity , 1994, IEEE Trans. Inf. Theory.

[5]  Amirhossein Ghazisaeidi,et al.  Calculation of coefficients of perturbative nonlinear pre-compensation for Nyquist pulses , 2014, 2014 The European Conference on Optical Communication (ECOC).

[6]  Bernard C. Picinbono,et al.  Second-order complex random vectors and normal distributions , 1996, IEEE Trans. Signal Process..

[7]  Peter J. Winzer,et al.  Scaling Optical Fiber Networks: Challenges and Solutions , 2015 .

[8]  David J Richardson,et al.  Filling the Light Pipe , 2010, Science.

[9]  Takeshi Hoshida,et al.  Analytical Intrachannel Nonlinear Models to Predict the Nonlinear Noise Waveform , 2015, Journal of Lightwave Technology.

[10]  M. Secondini,et al.  A Combined Regular-Logarithmic Perturbation Method for Signal-Noise Interaction in Amplified Optical Systems , 2009, Journal of Lightwave Technology.

[11]  P. Winzer,et al.  Capacity Limits of Optical Fiber Networks , 2010, Journal of Lightwave Technology.

[12]  K. Turitsyn,et al.  Information capacity of optical fiber channels with zero average dispersion. , 2003, Physical review letters.

[13]  M. Brandt-Pearce,et al.  Volterra series transfer function of single-mode fibers , 1997 .

[14]  Paul H. Siegel,et al.  On the Multiuser Capacity of WDM in a Nonlinear Optical Fiber: Coherent Communication , 2006, IEEE Transactions on Information Theory.

[15]  F. Kschischang,et al.  Probabilistic 16-QAM Shaping in WDM Systems , 2016, Journal of Lightwave Technology.

[16]  Mariia Sorokina,et al.  Optical information capacity processing , 2015 .

[17]  Ronen Dar,et al.  Properties of nonlinear noise in long, dispersion-uncompensated fiber links , 2013, Optics express.

[18]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[19]  Giuseppe Durisi,et al.  Information-theory-friendly models for fiber-optic channels: A primer , 2015, 2015 IEEE Information Theory Workshop (ITW).

[20]  P. Poggiolini,et al.  Analytical Modeling of Nonlinear Propagation in Uncompensated Optical Transmission Links , 2011, IEEE Photonics Technology Letters.

[21]  M. Karlsson,et al.  Perturbation Analysis of Nonlinear Propagation in a Strongly Dispersive Optical Communication System , 2012, Journal of Lightwave Technology.

[22]  Houbing Song,et al.  A 2-D Discrete-Time Model of Physical Impairments in Wavelength-Division Multiplexing Systems , 2012, Journal of Lightwave Technology.

[23]  Ronen Dar,et al.  Inter-Channel Nonlinear Interference Noise in WDM Systems: Modeling and Mitigation , 2015, Journal of Lightwave Technology.

[24]  Gerhard Kramer,et al.  Capacity limits of information transport in fiber-optic networks. , 2008, Physical review letters.

[25]  Partha P. Mitra,et al.  Nonlinear limits to the information capacity of optical fibre communications , 2000, Nature.

[26]  Mariia Sorokina,et al.  Sparse identification for nonlinear optical communication systems: SINO method. , 2016, Optics express.

[27]  Patrick Schulte,et al.  Rate Adaptation and Reach Increase by Probabilistically Shaped 64-QAM: An Experimental Demonstration , 2016, Journal of Lightwave Technology.

[28]  Giuseppe Durisi,et al.  Capacity of a Nonlinear Optical Channel With Finite Memory , 2014, Journal of Lightwave Technology.

[29]  Henk Wymeersch,et al.  A Discrete-Time Model for Uncompensated Single-Channel Fiber-Optical Links , 2012, IEEE Transactions on Communications.

[30]  Zhihong Li,et al.  Optimum quantization of perturbation coefficients for perturbative fiber nonlinearity mitigation , 2014, 2014 The European Conference on Optical Communication (ECOC).

[31]  G. Kramer,et al.  Fiber Capacity Limits With Optimized Ring Constellations , 2009, IEEE Photonics Technology Letters.

[32]  D. Rafique,et al.  Impact of signal-ASE four-wave mixing on the effectiveness of digital back-propagation in 112 Gb/s PM-QPSK systems. , 2011, Optics express.

[33]  P. Mitra,et al.  The channel capacity of a fiber optics communication system: perturbation theory , 2000, physics/0007033.

[34]  M. Feder,et al.  New bounds on the capacity of the nonlinear fiber-optic channel. , 2014, Optics letters.

[35]  S. Radic,et al.  Overcoming Kerr-induced capacity limit in optical fiber transmission , 2015, Science.

[36]  Ting Wang,et al.  Coded polarization-multiplexed iterative polar modulation (PM-IPM) for beyond 400 Gb/s serial optical transmission , 2010, 2010 Conference on Optical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference.

[37]  Peter J. Winzer,et al.  Roadmap on Optical Communications , 2016 .