The ESCAPE mission overview: exploring the stellar drivers of exoplanet habitability

The Extreme-ultraviolet Stellar Characterization for Atmospheric Physics and Evolution (ESCAPE) mission is an astrophysics Small Explorer employing ultraviolet spectroscopy (EUV: 80 - 825 Å and FUV: 1280 - 1650 Å) to explore the high-energy radiation environment in the habitable zones around nearby stars. ESCAPE provides the first comprehensive study of the stellar EUV and coronal mass ejection environments which directly impact the habitability of rocky exoplanets. In a 20 month science mission, ESCAPE will provide the essential stellar characterization to identify exoplanetary systems most conducive to habitability and provide a roadmap for NASA's future life-finder missions. ESCAPE accomplishes this goal with roughly two-order-of-magnitude gains in EUV efficiency over previous missions. ESCAPE employs a grazing incidence telescope that feeds an EUV and FUV spectrograph. The ESCAPE science instrument builds on previous ultraviolet and X-ray instrumentation, grazing incidence optical systems, and photon-counting ultraviolet detectors used on NASA astrophysics, heliophysics, and planetary science missions. The ESCAPE spacecraft bus is the versatile and high-heritage Ball Aerospace BCP-Small spacecraft. Data archives will be housed at the Mikulski Archive for Space Telescopes (MAST). ESCAPE is currently completing a NASA Phase A study, and if selected for Phase B development would launch in 2025.

[1]  H. Hudson,et al.  Indications of stellar coronal mass ejections through coronal dimmings , 2021, Nature Astronomy.

[2]  Olivier Guyon,et al.  The Large UV / Optical / Infrared Surveyor (LUVOIR) Telling the Story of Life in the Universe , 2021 .

[3]  J. Pineda,et al.  The Far Ultraviolet M-dwarf Evolution Survey. I. The Rotational Evolution of High-energy Emissions , 2021, The Astrophysical Journal.

[4]  David J. Wilson,et al.  Reconstructing the Extreme Ultraviolet Emission of Cool Dwarfs Using Differential Emission Measure Polynomials , 2021, The Astrophysical Journal.

[5]  Kevin France,et al.  DEUCE: a sounding-rocket ultraviolet spectrograph for flux-calibrated B star observations across the Lyman limit , 2021 .

[6]  J. Linsky,et al.  Semiempirical Modeling of the Atmospheres of the M Dwarf Exoplanet Hosts GJ 832 and GJ 581 , 2020, 2012.11738.

[7]  J. Haislip,et al.  EvryFlare. III. Temperature Evolution and Habitability Impacts of Dozens of Superflares Observed Simultaneously by Evryscope and TESS , 2020, The Astrophysical Journal.

[8]  M. Gudel,et al.  The active lives of stars: A complete description of the rotation and XUV evolution of F, G, K, and M dwarfs , 2020, Astronomy & Astrophysics.

[9]  David J. Wilson,et al.  The High-energy Radiation Environment around a 10 Gyr M Dwarf: Habitable at Last? , 2020, The Astronomical Journal.

[10]  J. Drake,et al.  Atmospheric Escape Processes and Planetary Atmospheric Evolution , 2020, Journal of Geophysical Research: Space Physics.

[11]  K. France,et al.  Near-ultraviolet Transmission Spectroscopy of HD 209458b: Evidence of Ionized Iron Beyond the Planetary Roche Lobe , 2020, The Astronomical Journal.

[12]  V. Kashyap,et al.  Pointing Chandra toward the Extreme Ultraviolet Fluxes of Very Low Mass Stars , 2019, The Astrophysical Journal.

[13]  Keivan G. Stassun,et al.  Stellar Flares from the First TESS Data Release: Exploring a New Sample of M Dwarfs , 2019, The Astronomical Journal.

[14]  T. Woods,et al.  The SDO/EVE Solar Irradiance Coronal Dimming Index Catalog. I. Methods and Algorithms , 2019, The Astrophysical Journal Supplement Series.

[15]  John V. Vallerga,et al.  Bench and thermal vacuum testing of the JUICE-UVS microchannel plate detector system , 2019, Optical Engineering + Applications.

[16]  Jean-Claude Bouret,et al.  Opening the road to custom astronomical UV gratings (Conference Presentation) , 2019, Optics for EUV, X-Ray, and Gamma-Ray Astronomy IX.

[17]  Nikole K. Lewis,et al.  The Hubble Space Telescope PanCET Program: Exospheric Mg ii and Fe ii in the Near-ultraviolet Transmission Spectrum of WASP-121b Using Jitter Decorrelation , 2019, The Astronomical Journal.

[18]  M. Way,et al.  Impact of space weather on climate and habitability of terrestrial-type exoplanets , 2019, International Journal of Astrobiology.

[19]  Bertrand Mennesson,et al.  ExoEarth yield landscape for future direct imaging space telescopes , 2019, Journal of Astronomical Telescopes, Instruments, and Systems.

[20]  J. Davenport,et al.  Modeling Repeated M Dwarf Flaring at an Earth-like Planet in the Habitable Zone: Atmospheric Effects for an Unmagnetized Planet , 2017, Astrobiology.

[21]  Randall L. McEntaffer,et al.  Fabrication and Diffraction Efficiency of a Large-format, Replicated X-Ray Reflection Grating , 2018, The Astrophysical Journal.

[22]  C. Russell,et al.  Loss of the Martian atmosphere to space: Present-day loss rates determined from MAVEN observations and integrated loss through time , 2018, Icarus.

[23]  Isabella Pagano,et al.  HAZMAT. IV. Flares and Superflares on Young M Stars in the Far Ultraviolet , 2018, The Astrophysical Journal.

[24]  Kevin France,et al.  The MUSCLES Treasury Survey. V. FUV Flares on Active and Inactive M Dwarfs , 2018, The Astrophysical Journal.

[25]  Kevin France,et al.  Far-ultraviolet Activity Levels of F, G, K, and M Dwarf Exoplanet Host Stars , 2018, The Astrophysical Journal Supplement Series.

[26]  Astrid M. Veronig,et al.  Statistics of Coronal Dimmings Associated with Coronal Mass Ejections. I. Characteristic Dimming Properties and Flare Association , 2018, The Astrophysical Journal.

[27]  Vincent Hue,et al.  Stray and scattered light properties of the Juno ultraviolet spectrograph , 2018, Astronomical Telescopes + Instrumentation.

[28]  J. Drake,et al.  Suppression of Coronal Mass Ejections in Active Stars by an Overlying Large-scale Magnetic Field: A Numerical Study , 2018, The Astrophysical Journal.

[29]  R. Osten,et al.  Constraining Stellar Coronal Mass Ejections through Multi-wavelength Analysis of the Active M Dwarf EQ Peg , 2018, 1802.03440.

[30]  Astrid M. Veronig,et al.  On the Detection of Coronal Dimmings and the Extraction of Their Characteristic Properties , 2018, 1802.03185.

[31]  Evgenya L. Shkolnik,et al.  HAZMAT. III. The UV Evolution of Mid- to Late-M Stars with GALEX , 2018, 1801.06711.

[32]  L. Schaefer,et al.  Redox Evolution via Gravitational Differentiation on Low-mass Planets: Implications for Abiotic Oxygen, Water Loss, and Habitability , 2017, 1710.00345.

[33]  P. Lamy,et al.  Periodic behaviour of coronal mass ejections, eruptive events, and solar activity proxies during solar cycles 23 and 24 , 2017, Journal of Atmospheric and Solar-Terrestrial Physics.

[34]  Jeremy J. Drake,et al.  A Monster CME Obscuring a Demon Star Flare , 2017, 1710.07361.

[35]  L. Fossati,et al.  The Influence of Coronal Mass Ejections on the Mass-loss Rates of Hot-Jupiters , 2017, 1709.01027.

[36]  Alex Glocer,et al.  On the Magnetic Protection of the Atmosphere of Proxima Centauri b , 2017 .

[37]  A. Engeln,et al.  Strong dipole magnetic fields in fast rotating fully convective stars , 2017, Nature Astronomy.

[38]  H. Lammer,et al.  Stellar coronal mass ejections – I. Estimating occurrence frequencies and mass-loss rates , 2017, 1707.02165.

[39]  H. Lichtenegger,et al.  Escape and evolution of Mars's CO2 atmosphere: Influence of suprathermal atoms , 2017, 1911.02796.

[40]  Chuanfei Dong,et al.  Is Proxima Centauri b Habitable? A Study of Atmospheric Loss , 2017, 1702.04089.

[41]  William C. Danchi,et al.  How Hospitable Are Space Weather Affected Habitable Zones? The Role of Ion Escape , 2017 .

[42]  E. Guinan,et al.  The habitability of Proxima Centauri b. I. Irradiation, rotation and volatile inventory from formation to the present , 2016, 1608.06813.

[43]  Kevin France,et al.  SEMI-EMPIRICAL MODELING OF THE PHOTOSPHERE, CHROMOPSHERE, TRANSITION REGION, AND CORONA OF THE M-DWARF HOST STAR GJ 832 , 2016, 1608.00934.

[44]  Giovanni G. Fazio,et al.  The LUVOIR science and technology definition team (STDT): overview and status , 2016 .

[45]  L. Decin,et al.  INFLUENCE OF STELLAR FLARES ON THE CHEMICAL COMPOSITION OF EXOPLANETS AND SPECTRA , 2016, 1607.08147.

[46]  A. Vourlidas,et al.  RELATIONSHIP OF EUV IRRADIANCE CORONAL DIMMING SLOPE AND DEPTH TO CORONAL MASS EJECTION SPEED AND MASS , 2016, 1607.05284.

[47]  J. Davenport THE KEPLER CATALOG OF STELLAR FLARES , 2016, 1607.03494.

[48]  Kevin France,et al.  SISTINE: a pathfinder for FUV imaging spectroscopy on future NASA astrophysics missions , 2016, Astronomical Telescopes + Instrumentation.

[49]  H. Hudson,et al.  The Characteristics of Solar X-Class Flares and CMEs: A Paradigm for Stellar Superflares and Eruptions? , 2016 .

[50]  H. Lichtenegger,et al.  Solar XUV and ENA‐driven water loss from early Venus' steam atmosphere , 2016, 1911.02288.

[51]  Kevin France,et al.  THE MUSCLES TREASURY SURVEY. I. MOTIVATION AND OVERVIEW , 2016, 1602.09142.

[52]  H. Lammer,et al.  THE EVOLUTION OF STELLAR ROTATION AND THE HYDROGEN ATMOSPHERES OF HABITABLE-ZONE TERRESTRIAL PLANETS , 2015, 1511.03647.

[53]  D. Curtis,et al.  MAVEN observations of the response of Mars to an interplanetary coronal mass ejection , 2015, Science.

[54]  Sharon R. Jelinsky,et al.  Performance results of the ICON FUV sealed tube converters , 2015, SPIE Optical Engineering + Applications.

[55]  Kolby L. Weisenburger,et al.  AN ACTIVITY–ROTATION RELATIONSHIP AND KINEMATIC ANALYSIS OF NEARBY MID-TO-LATE-TYPE M DWARFS , 2015, 1509.01590.

[56]  Scott J. Wolk,et al.  CONNECTING FLARES AND TRANSIENT MASS-LOSS EVENTS IN MAGNETICALLY ACTIVE STARS , 2015, 1506.04994.

[57]  T. Ayres THE FLARE-ONA OF EK DRACONIS , 2015, 1505.02320.

[58]  H. Lammer,et al.  The Extreme Ultraviolet and X-Ray Sun in Time: High-Energy Evolutionary Tracks of a Solar-Like Star , 2015, 1504.04546.

[59]  L. Ben-Jaffel,et al.  RE-VISIT OF HST FUV OBSERVATIONS OF THE HOT-JUPITER SYSTEM HD 209458: NO Si iii DETECTION AND THE NEED FOR COS TRANSIT OBSERVATIONS , 2015, 1503.01621.

[60]  D. Charbonneau,et al.  THE OCCURRENCE OF POTENTIALLY HABITABLE PLANETS ORBITING M DWARFS ESTIMATED FROM THE FULL KEPLER DATASET AND AN EMPIRICAL MEASUREMENT OF THE DETECTION SENSITIVITY , 2015, 1501.01623.

[61]  R. Luger,et al.  Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of M dwarfs. , 2014, Astrobiology.

[62]  Lisa Kaltenegger,et al.  THE HABITABLE ZONES OF PRE-MAIN-SEQUENCE STARS , 2014, 1412.1764.

[63]  P. Prinetto,et al.  FLARES , 2014 .

[64]  T. Woods,et al.  MECHANISMS AND OBSERVATIONS OF CORONAL DIMMING FOR THE 2010 AUGUST 7 EVENT , 2014, 1404.1364.

[65]  Kevin France,et al.  FLUCTUATIONS AND FLARES IN THE ULTRAVIOLET LINE EMISSION OF COOL STARS: IMPLICATIONS FOR EXOPLANET TRANSIT OBSERVATIONS , 2014, 1402.0073.

[66]  Kevin France,et al.  THE INTRINSIC EXTREME ULTRAVIOLET FLUXES OF F5 V TO M5 V STARS , 2013, 1310.1360.

[67]  R. Kopparapu,et al.  A REVISED ESTIMATE OF THE OCCURRENCE RATE OF TERRESTRIAL PLANETS IN THE HABITABLE ZONES AROUND KEPLER M-DWARFS , 2013, 1303.2649.

[68]  Kevin France,et al.  HST-COS OBSERVATIONS OF HYDROGEN, HELIUM, CARBON, AND NITROGEN EMISSION FROM THE SN 1987A REVERSE SHOCK , 2011, 1111.1735.

[69]  Harry P. Warren,et al.  NEW SOLAR EXTREME-ULTRAVIOLET IRRADIANCE OBSERVATIONS DURING FLARES , 2011 .

[70]  Gregory S. Winters,et al.  Radiometric performance results of the Juno ultraviolet spectrograph (Juno-UVS) , 2011, Optical Engineering + Applications.

[71]  I. Ribas,et al.  Estimation of the XUV radiation onto close planets and their evaporation , 2011, 1105.0550.

[72]  B. Jones,et al.  Habitability of exoplanetary systems with planets observed in transit , 2010, 1006.0657.

[73]  S. Hawley,et al.  The effect of a strong stellar flare on the atmospheric chemistry of an earth-like planet orbiting an M dwarf. , 2010, Astrobiology.

[74]  Kevin France,et al.  OBSERVATIONS OF MASS LOSS FROM THE TRANSITING EXOPLANET HD 209458b , 2010, 1005.1633.

[75]  R. G. West,et al.  METALS IN THE EXOSPHERE OF THE HIGHLY IRRADIATED PLANET WASP-12b , 2010, 1005.3656.

[76]  F. G. Eparvier,et al.  Extreme Ultraviolet Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO): Overview of Science Objectives, Instrument Design, Data Products, and Model Developments , 2010 .

[77]  Angelos Vourlidas,et al.  FIRST MEASUREMENTS OF THE MASS OF CORONAL MASS EJECTIONS FROM THE EUV DIMMING OBSERVED WITH STEREO EUVI A+B SPACECRAFT , 2009 .

[78]  D. A. Biesecker,et al.  THE RELATIONSHIP BETWEEN CORONAL DIMMING AND CORONAL MASS EJECTION PROPERTIES , 2009 .

[79]  Russell A. Howard,et al.  The SOHO/LASCO CME Catalog , 2009 .

[80]  William E. McClintock,et al.  Solar Irradiance Reference Spectra (SIRS) for the 2008 Whole Heliosphere Interval (WHI) , 2008 .

[81]  Jeffrey L. Linsky,et al.  The Structure of the Local Interstellar Medium. IV. Dynamics, Morphology, Physical Properties, and Implications of Cloud-Cloud Interactions , 2007, 0709.4480.

[82]  Ignasi Ribas,et al.  Coronal mass ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. I. CME impact on expected magnetospheres of Earth-like exoplanets in close-in habitable zones. , 2007, Astrobiology.

[83]  H. Lichtenegger,et al.  Coronal mass ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. II. CME-induced ion pick up of Earth-like exoplanets in close-in habitable zones. , 2007, Astrobiology.

[84]  S. Hawley,et al.  TRACERS OF CHROMOSPHERIC STRUCTURE. I. OBSERVATIONS OF Ca ii K AND Hα IN M DWARFS , 2006, 0811.1778.

[85]  H. Lichtenegger,et al.  Atmospheric and water loss from early Venus , 2006 .

[86]  N. Gopalswamy,et al.  Different Power-Law Indices in the Frequency Distributions of Flares with and without Coronal Mass Ejections , 2006, astro-ph/0609197.

[87]  J. Valenti,et al.  The Large-Scale Axisymmetric Magnetic Topology of a Very-Low-Mass Fully Convective Star , 2006, Science.

[88]  J. Linsky,et al.  Stellar Lyα Emission Lines in the Hubble Space Telescope Archive: Intrinsic Line Fluxes and Absorption from the Heliosphere and Astrospheres , 2005, astro-ph/0503372.

[89]  G. H'ebrard,et al.  Detection of Oxygen and Carbon in the Hydrodynamically Escaping Atmosphere of the Extrasolar Planet HD 209458b , 2004, astro-ph/0401457.

[90]  S. Hawley,et al.  Multiwavelength Observations of Flares on AD Leonis , 2003 .

[91]  S. Lacour,et al.  Far Ultraviolet Spectroscopic Explorer Survey of the Local Interstellar Medium within 200 Parsecs , 2003 .

[92]  V. Kashyap,et al.  Extreme-Ultraviolet Flare Activity in Late-Type Stars , 2000 .

[93]  J. B. Joyce,et al.  On-Orbit Performance of the Far Ultraviolet Spectroscopic Explorer Satellite , 2000, astro-ph/0005531.

[94]  Heinrich W. Braeuninger,et al.  Description and performance of the low-energy transmission grating spectrometer on board Chandra , 2000, Astronomical Telescopes and Instrumentation.

[95]  H. Hudson,et al.  Yohkoh SXT Observations of X-Ray “Dimming” Associated with a Halo Coronal Mass Ejection , 1997 .

[96]  J. Drake,et al.  Stellar Coronal Abundances. V. Evidence for the First Ionization Potential Effect in α Centauri , 1997 .

[97]  E. Chassefière Hydrodynamic Escape of Oxygen from Primitive Atmospheres: Applications to the Cases of Venus and Mars , 1996 .

[98]  J. Drake,et al.  Stellar Coronal Abundances. II. The First Ionization Potential Effect and Its Absence in the Corona of Procyon , 1995 .

[99]  Roger F. Malina,et al.  Long-term orbital performance of the microchannel plate (MCP) detectors aboard the Extreme Ultraviolet Explorer , 1994, Optics & Photonics.

[100]  S. Hawley,et al.  The Great Flare of 1985 April 12 on AD Leonis , 1991 .

[101]  M. Lampton The Extreme Ultraviolet Explorer Mission , 1990 .

[102]  S. Bowyer,et al.  Grazing incidence telescopes: a new class for soft x-ray and EUV spectroscopy. , 1984, Applied optics.

[103]  W. Cash,et al.  X-ray spectrographs using radial groove gratings. , 1983, Applied optics.

[104]  Leon Golub,et al.  Coordinated Einstein and IUE observations of a disparitions brusques type flare event and quiescent emission from Proxima Centauri , 1983 .