Recent Progress in the Growth of Highly Reflective Nitride-Based Distributed Bragg Reflectors and Their Use in Microcavities

The growth of highly-reflective nitride-based distributed Bragg reflectors (DBRs) and their use in vertical cavity structures is reviewed. We discuss the various nitride material systems employed to design Bragg mirrors and microcavities, namely the Al-x(Ga)(1-x)N/(Al)(y)Ga1-yN and the lattice-matched Al1-xInxN/GaN (x(ln) similar to 18%)-based systems. An emphasis on particular issues such as strain management, internal absorption, alloy morphology and contribution of leaky modes is carried out. Specific properties of the poorly known AlInN alloy such as the bandgap variation with In content close to lattice-matched conditions to GaN are reported. The superior optical quality of the lattice-matched AlInN/GaN system for the realization of nitride-based DBRs is demonstrated. The properties of nitride-based vertical cavity devices are also described. Forthcoming challenges such as the realization of electrically pumped vertical cavity surface emitting lasers and strongly coupled quantum microcavities are discussed as well, and in particular critical issues such as vertical current injection.

[1]  Catalano,et al.  Room temperature lasing at blue wavelengths in gallium nitride microcavities , 1999, Science.

[2]  H. Amano,et al.  Structural and optical properties of AlInN and AlGaInN on GaN grown by metalorganic vapor phase epitaxy , 1998 .

[3]  J. Geske,et al.  Low resistance intracavity-contacted oxide-aperture VCSELs , 1998, IEEE Photonics Technology Letters.

[4]  Ratna Naik,et al.  Optical and electrical properties of Al1−xInxN films grown by plasma source molecular-beam epitaxy , 2001 .

[5]  Joan M. Redwing,et al.  An optically pumped GaN–AlGaN vertical cavity surface emitting laser , 1996 .

[6]  Oliver Ambacher,et al.  Optical constants of epitaxial AlGaN films and their temperature dependence , 1997 .

[7]  V. Kulakovskii,et al.  Strong coupling in a single quantum dot–semiconductor microcavity system , 2004, Nature.

[8]  S. Nakamura,et al.  Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes , 2000 .

[9]  T Tawara,et al.  Cavity polaritons in InGaN microcavities at room temperature. , 2004, Physical review letters.

[10]  Joachim Piprek,et al.  Band gap bowing and refractive index spectra of polycrystalline AlxIn1−xN films deposited by sputtering , 1997 .

[11]  M. S. Skolnick,et al.  Angle-resonant stimulated polariton amplifier , 2000, Physical review letters.

[12]  Stanley,et al.  Measurement of cavity-polariton dispersion curve from angle resolved photoluminescence experiments. , 1994, Physical review letters.

[13]  A. Nurmikko,et al.  Vertical cavity violet light emitting diode incorporating an aluminum gallium nitride distributed Bragg mirror and a tunnel junction , 2001 .

[14]  T. Fisher,et al.  Polarization-dependent phenomena in the reflectivity spectra of semiconductor quantum microcavities , 1997 .

[15]  Tao Wang,et al.  AlGaN‐based Bragg mirrors and hybrid microcavities for the ultra‐violet spectral region , 2005 .

[16]  Takashi Jimbo,et al.  MOCVD growth of high reflective GaN/AlGaN distributed Bragg reflectors , 2002 .

[17]  Yoshihisa Yamamoto,et al.  Indistinguishable photons from a single-photon device , 2002, Nature.

[18]  Yamamoto,et al.  Spontaneous-emission coupling factor and mode characteristics of planar dielectric microcavity lasers. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[19]  Lionel Hirsch,et al.  AlN/AlGaN Bragg-Reflectors for UV Spectral Range Grown by Molecular Beam Epitaxy on Si (111) , 2002 .

[20]  H. Kuo,et al.  MOCVD growth of AlN/GaN DBR structures under various ambient conditions , 2004 .

[21]  T. Brun Scientists Supporting SSC Quoted Unfairly , 1993 .

[22]  Yasuhiko Arakawa,et al.  InGaN vertical microcavity LEDs with a Si-doped AlGaN/GaN distributed Bragg reflector , 2002 .

[23]  Yasuhiko Arakawa,et al.  Observation of enhanced spontaneous emission coupling factor in nitride-based vertical-cavity surface-emitting laser , 2002 .

[24]  Jeremy J. Baumberg,et al.  Room-temperature polariton lasers based on GaN microcavities , 2002 .

[25]  O. Brandt,et al.  Crack-free and conductive Si-doped AlN∕GaN distributed Bragg reflectors grown on 6H-SiC(0001) , 2004 .

[26]  A. Nurmikko,et al.  Near ultraviolet optically pumped vertical cavity laser , 2000 .

[27]  Kenichi Iga,et al.  Vertical cavity surface-emitting laser with an AlGaAs/AlAs Bragg reflector , 1988 .

[28]  Brian Thibeault,et al.  Band‐gap engineered digital alloy interfaces for lower resistance vertical‐cavity surface‐emitting lasers , 1993 .

[29]  Marc Ilegems,et al.  Crack-free fully epitaxial nitride microcavity using highly reflective AlInN∕GaN Bragg mirrors , 2005 .

[30]  Marc Ilegems,et al.  Lattice-matched distributed Bragg reflectors for nitride-based vertical cavity surface emitting lasers , 2005 .

[31]  R. Burnham,et al.  High reflectivity GaAs‐AlGaAs mirrors fabricated by metalorganic chemical vapor deposition , 1984 .

[32]  R. Romestain,et al.  Consequences of strong coupling between excitons and microcavity leaky modes , 2005 .

[33]  Yoshihisa Yamamoto,et al.  Efficient source of single photons: a single quantum dot in a micropost microcavity. , 2002 .

[34]  Takashi Matsuoka,et al.  Calculation of unstable mixing region in wurtzite In1−x−yGaxAlyN , 1997 .

[35]  Fabrice Semond,et al.  Growth of high quality crack-free AlGaN films on GaN templates using plastic relaxation through buried cracks , 2003 .

[36]  Marc Ilegems,et al.  Progress in AlInN-GaN Bragg reflectors: Application to a microcavity light emitting diode , 2005 .

[37]  M. Asif Khan,et al.  Reflective filters based on single‐crystal GaN/AlxGa1−xN multilayers deposited using low‐pressure metalorganic chemical vapor deposition , 1991 .

[38]  K. Killeen,et al.  Low resistance wavelength-reproducible p-type (Al,Ga)As distributed Bragg reflectors grown by molecular beam epitaxy , 1993 .

[39]  Y. Arakawa,et al.  Highly reflective GaN/Al0.34Ga0.66N quarter-wave reflectors grown by metal organic chemical vapor deposition , 1998 .

[40]  Hui Yang,et al.  Nucleation and growth of GaN layers on GaAs, Si, and SiC substrates , 1998 .

[41]  Larry A. Coldren,et al.  Improved Characteristics of InGaN Multi-Quantum-Well Laser Diodes Grown on Laterally Epitaxially Overgrown GaN on Sapphire , 2000 .

[42]  M. S. Skolnick,et al.  High-reflectivity AlxGa1−xN∕AlyGa1−yN distributed Bragg reflectors with peak wavelength around 350nm , 2004 .

[43]  M. S. Skolnick,et al.  Strong coupling phenomena in quantum microcavity structures , 1998 .

[44]  R. Langer,et al.  High-reflectivity GaN/GaAlN Bragg mirrors at blue/green wavelengths grown by molecular beam epitaxy , 1999 .

[45]  Theodore D. Moustakas,et al.  Distributed Bragg reflectors based on AlN/GaN multilayers , 1999 .

[46]  J. Bloch,et al.  High-temperature ultrafast polariton parametric amplification in semiconductor microcavities , 2001, Nature.

[47]  J. Carlin,et al.  High-quality AlInN for high index contrast Bragg mirrors lattice matched to GaN , 2003 .

[48]  A. Nurmikko,et al.  Stress Engineering During Metalorganic Chemical Vapor Deposition of AlGaN/GaN Distributed Bragg Reflectors , 2001 .

[49]  F. Kish,et al.  A quasicontinuous wave, optically pumped violet vertical cavity surface emitting laser , 2000 .

[50]  Anirban Bhattacharyya,et al.  High reflectivity and crack-free AlGaN 'AlN ultraviolet distributed Bragg reflectors , 2002 .

[51]  Takeshi Kamiya,et al.  Lasing Emission from an In0.1Ga0.9N Vertical Cavity Surface Emitting Laser , 1998 .

[52]  Marc Ilegems,et al.  GaN-based Single Mirror Light Emitting Diodes with high external quantum efficiency , 2003 .

[53]  V. A. Semenov,et al.  Room-temperature photopumped InGaN/GaN/AlGaN vertical-cavity surface-emitting laser , 1999 .

[54]  K. Vahala Optical microcavities : Photonic technologies , 2003 .

[55]  Takeshi Kamiya,et al.  Lasing Emission from an In_ Ga_ N Vertical Cavity Surface Emitting Laser , 1998 .

[56]  Theodore D. Moustakas,et al.  High reflectivity and broad bandwidth AlN/GaN distributed Bragg reflectors grown by molecular-beam epitaxy , 2000 .

[57]  Jean-Michel Gérard,et al.  InAs quantum dots: artificial atoms for solid-state cavity-quantum electrodynamics , 2001 .

[58]  H. Macleod,et al.  Thin-Film Optical Filters , 1969 .

[59]  Timothy J. Drummond,et al.  AlN-GaN quarter-wave reflector stack grown by gas-source MBE on (100) GaAs , 1995 .

[60]  J. Carlin,et al.  Selective oxidation of AlInN layers for current confinement in III–nitride devices , 2005 .

[61]  C. Weisbuch,et al.  Impact of planar microcavity effects on light extraction-Part I: basic concepts and analytical trends , 1998 .

[62]  Yeong-Her Wang,et al.  Resonant cavity light‐emitting diode , 1992 .