Modeling Tag-Aware Recommendations Based on User Preferences

A recommender system aims at recommending items that users might be interested in. With an increasing popularity of social tagging systems, it becomes urgent to model recommendations on users, items, and tags in a unified way. In this paper, we propose a framework for studying recommender systems by modeling user preferences as a relation on (user, item, tag) triples. We discuss tag-aware recommender systems from two aspects. On the one hand, we compute associations between users and items related to tags by using an adaptive method and recommend tags to users or predict item properties for users. On the other hand, by taking the similarity-based recommendation as a case study, we discuss similarity measures from both qualitative and quantitative perspectives and k-nearest neighbors and reverse k-nearest neighbors for recommendations.

[1]  Jiajin Huang,et al.  An Adaptive Method for the Tag-Rating-Based Recommender System , 2012, AMT.

[2]  Mehran Sahami,et al.  Evaluating similarity measures: a large-scale study in the orkut social network , 2005, KDD '05.

[3]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[4]  Jiajin Huang,et al.  Using Market Value Functions for Targeted Marketing Data Mining , 2002, Int. J. Pattern Recognit. Artif. Intell..

[5]  Luca Cagliero,et al.  Personalized tag recommendation based on generalized rules , 2013, ACM Trans. Intell. Syst. Technol..

[6]  Juan C. Burguillo,et al.  Exploiting Social Tagging in a Web 2.0 Recommender System , 2010, IEEE Internet Computing.

[7]  Harald Steck,et al.  Evaluation of recommendations: rating-prediction and ranking , 2013, RecSys.

[8]  Andreas Hotho,et al.  Information Retrieval in Folksonomies: Search and Ranking , 2006, ESWC.

[9]  Andreas Hotho,et al.  Discovering shared conceptualizations in folksonomies , 2008, J. Web Semant..

[10]  Yi-Cheng Zhang,et al.  Tag-Aware Recommender Systems: A State-of-the-Art Survey , 2011, Journal of Computer Science and Technology.

[11]  Jun Wang,et al.  Noname manuscript No. (will be inserted by the editor) Bridging Memory-Based Collaborative Filtering and Text Retrieval , 2022 .

[12]  Ning Zhong,et al.  In Search of the Wisdom Web , 2002, Computer.

[13]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[14]  Yiyu Yao,et al.  Data analysis and mining in ordered information tables , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[15]  Reyn Y. Nakamoto,et al.  DEWS 2007 M 5-6 Tag-Based Contextual Collaborative Filtering , 2007 .

[16]  Ning Zhong,et al.  In search of the wisdom web , 2002, Computer.

[17]  Wei Zeng,et al.  Uncovering the information core in recommender systems , 2014, Scientific Reports.

[18]  S. Muthukrishnan,et al.  Influence sets based on reverse nearest neighbor queries , 2000, SIGMOD '00.

[19]  Yiyu Yao,et al.  Preference structure, inference and set-oriented retrieval , 1991, SIGIR '91.

[20]  Yiyu Yao,et al.  A UNIFIED FRAMEWORK OF TARGETED MARKETING USING CUSTOMER PREFERENCES , 2014, Comput. Intell..

[21]  Sadok Ben Yahia,et al.  Scalable Mining of Frequent Tri-concepts from Folksonomies , 2012, PAKDD.

[22]  Licia Capra,et al.  Social ranking: uncovering relevant content using tag-based recommender systems , 2008, RecSys '08.

[23]  Dimitrios Skoutas,et al.  Tag clouds revisited , 2011, CIKM '11.

[24]  Yiyu Yao,et al.  Query formulation in linear retrieval models , 1990, J. Am. Soc. Inf. Sci..

[25]  Panagiotis Symeonidis,et al.  A Unified Framework for Providing Recommendations in Social Tagging Systems Based on Ternary Semantic Analysis , 2010, IEEE Transactions on Knowledge and Data Engineering.

[26]  Brian D. Davison,et al.  A probabilistic model for personalized tag prediction , 2010, KDD.

[27]  Daniel Dajun Zeng,et al.  Latent subject-centered modeling of collaborative tagging , 2011, ACM Trans. Manag. Inf. Syst..

[28]  FATIH GEDIKLI,et al.  Improving recommendation accuracy based on item-specific tag preferences , 2013, TIST.

[29]  John Riedl,et al.  An Algorithmic Framework for Performing Collaborative Filtering , 1999, SIGIR Forum.

[30]  Yiyu Yao,et al.  Evaluation of an adaptive linear model , 1991, J. Am. Soc. Inf. Sci..

[31]  Michael J. Pazzani,et al.  A Framework for Collaborative, Content-Based and Demographic Filtering , 1999, Artificial Intelligence Review.

[32]  Michel Beigbeder,et al.  Recall-Oriented Evaluation for Information Retrieval Systems , 2013, IRFC.

[33]  Yiyu Yao,et al.  Computation of term associations by a neural network , 1993, SIGIR.

[34]  Paul Resnick,et al.  Recommender systems , 1997, CACM.

[35]  Daniel Dajun Zeng,et al.  A Random Walk Model for Item Recommendation in Social Tagging Systems , 2013, TMIS.

[36]  Stephen E. Robertson,et al.  Probabilistic relevance ranking for collaborative filtering , 2008, Information Retrieval.

[37]  Douglas B. Terry,et al.  Using collaborative filtering to weave an information tapestry , 1992, CACM.

[38]  Lars Schmidt-Thieme,et al.  Learning optimal ranking with tensor factorization for tag recommendation , 2009, KDD.

[39]  Ron Kohavi,et al.  A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.

[40]  Haoran Xie,et al.  Exploring personalized searches using tag-based user profiles and resource profiles in folksonomy , 2014, Neural Networks.

[41]  Andreas Hotho,et al.  Tag recommendations in social bookmarking systems , 2008, AI Commun..

[42]  Yiyu Yao,et al.  Envisioning intelligent information technologies through the prism of web intelligence , 2007, Commun. ACM.

[43]  Yo-Sub Han,et al.  A movie recommendation algorithm based on genre correlations , 2012, Expert Syst. Appl..

[44]  Yiyu Yao,et al.  Evaluation of an adaptive linear model , 1991 .

[45]  Juntao Liu,et al.  Bayesian Probabilistic Matrix Factorization with Social Relations and Item Contents for recommendation , 2013, Decis. Support Syst..

[46]  Yi-Cheng Zhang,et al.  Solving the apparent diversity-accuracy dilemma of recommender systems , 2008, Proceedings of the National Academy of Sciences.

[47]  Jonathan L. Herlocker,et al.  Evaluating collaborative filtering recommender systems , 2004, TOIS.

[48]  Bamshad Mobasher,et al.  Personalizing Navigation in Folksonomies Using Hierarchical Tag Clustering , 2008, DaWaK.

[49]  Ning Zhong,et al.  Preference Structure and Similarity Measure in Tag-Based Recommender Systems , 2013, AMT.

[50]  Robert Wetzker,et al.  A hybrid PLSA approach for warmer cold start in folksonomy recommendation , 2009 .

[51]  Yoav Shoham,et al.  Fab: content-based, collaborative recommendation , 1997, CACM.

[52]  Yiyu Yao,et al.  On modeling information retrieval with probabilistic inference , 1995, TOIS.

[53]  Chun Chen,et al.  Personalized tag recommendation using graph-based ranking on multi-type interrelated objects , 2009, SIGIR.

[54]  Fernando Ortega,et al.  A framework for collaborative filtering recommender systems , 2011, Expert Syst. Appl..

[55]  GoldbergDavid,et al.  Using collaborative filtering to weave an information tapestry , 1992 .

[56]  Jia-jin Huang,et al.  Modeling Recommender Systems from Preference and Set-Oriented Perspectives , 2012 .

[57]  S. K. M. Wong,et al.  Query formulation in linear retrieval models , 1990, J. Am. Soc. Inf. Sci..

[58]  Jun Wang,et al.  Personalization of tagging systems , 2010, Inf. Process. Manag..

[59]  Andreas Hotho,et al.  Social Tagging Recommender Systems , 2011, Recommender Systems Handbook.

[60]  Ning Zhong,et al.  A Unified Probabilistic Inference Model for Targeted Marketing , 2008, Communications and Discoveries from Multidisciplinary Data.

[61]  Engelbert Mephu Nguifo,et al.  A personalized recommender system based on users' information in folksonomies , 2013, WWW.