Estimating an Activity Driven Hidden Markov Model

We define a Hidden Markov Model (HMM) in which each hidden state has time-dependent $\textit{activity levels}$ that drive transitions and emissions, and show how to estimate its parameters. Our construction is motivated by the problem of inferring human mobility on sub-daily time scales from, for example, mobile phone records.

[1]  Li Deng,et al.  A stochastic model of speech incorporating hierarchical nonstationarity , 1993, IEEE Trans. Speech Audio Process..

[2]  Pierre Lanchantin,et al.  UNSUPERVISED NON STATIONARY IMAGE SEGMENTATION USING TRIPLET MARKOV CHAINS , 2004 .

[3]  Ryuichi Kitamura,et al.  Micro-simulation of daily activity-travel patterns for travel demand forecasting , 2000 .

[4]  Dongjin Song,et al.  High resolution population estimates from telecommunications data , 2015, EPJ Data Science.

[5]  Albert-László Barabási,et al.  Understanding individual human mobility patterns , 2008, Nature.

[6]  Maxi San Miguel,et al.  Influence of sociodemographics on human mobility , 2015 .

[7]  Albert-László Barabási,et al.  Limits of Predictability in Human Mobility , 2010, Science.

[8]  Andrew J. Tatem,et al.  Theory and data for simulating fine-scale human movement in an urban environment , 2014, Journal of The Royal Society Interface.

[9]  Jin H. Kim,et al.  Nonstationary hidden Markov model , 1995, Signal Process..

[10]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[11]  L. Baum,et al.  An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology , 1967 .

[12]  Bruno Martins,et al.  Predicting future locations with hidden Markov models , 2012, UbiComp.

[13]  Balázs Csanád Csáji,et al.  Exploring the Mobility of Mobile Phone Users , 2012, ArXiv.

[14]  Guy Leduc,et al.  Learning movement patterns in mobile networks: a generic method , 2004 .

[15]  Marta C. González,et al.  Analyzing Cell Phone Location Data for Urban Travel , 2015 .