Systematic control of nonlinear optical processes using optimally shaped femtosecond pulses.

This article reviews experimental efforts to control multiphoton transitions using shaped femtosecond laser pulses, and it lays out the systematic study being followed by us for elucidating the effect of phase on nonlinear optical laser-molecule interactions. Starting with a brief review of nonlinear optics and how nonlinear optical processes depend on the electric field inducing them, a number of conclusions can be drawn directly from analytical solutions of the equations. From a Taylor expansion of the phase in the frequency domain, we learn that nonlinear optical processes are affected only by the second- and higher-order terms. This simple result has significant implications on how pulse-shaping experiments are to be designed. If the phase is allowed to vary arbitrarily as a continuous function, then an infinite redundancy that arises from the addition of a linear phase function across the spectrum with arbitrary offset and slope could prevent us from carrying out a closed-loop optimization experiment. The early results illustrate how the outcome of a nonlinear optical transition depends on the cooperative action of all frequencies in the bandwidth of a laser pulse. Maximum constructive or destructive interference can be achieved by programming the phase using only two phase values, 0 and pi. This assertion has been confirmed experimentally, where binary phase shaping (BPS) was shown to outperform other alternative functions, sometimes by at least on order of magnitude, in controlling multiphoton processes. Here we discuss the solution of a number of nonlinear problems that range from narrowing the second harmonic spectrum of a laser pulse to optimizing the competition between two- and three-photon transitions. This Review explores some present and future applications of pulse shaping and coherent control.

[1]  S. Leone,et al.  Optimization of wave packet coefficients in Li2 using an evolutionary algorithm: The role of resonant and nonresonant wavelengths , 2002 .

[2]  N. Henriksen Laser control of chemical reactions. , 2002, Chemical Society reviews.

[3]  Yaron Silberberg,et al.  Adaptive ultrashort pulse compression and shaping , 1997 .

[4]  Herschel A Rabitz,et al.  Quantum Optimally Controlled Transition Landscapes , 2004, Science.

[5]  J P Heritage,et al.  Encoding and decoding of femtosecond pulses. , 1988, Optics letters.

[6]  G. Szabó,et al.  Control of the photodissociation of CsCl , 2000 .

[7]  G. Gerber,et al.  Feedback-controlled femtosecond pulse shaping , 2000 .

[8]  G. Gerber,et al.  Feedback-controlled optimization of amplified femtosecond laser pulses , 1999 .

[9]  Ulrich A. Russek,et al.  Pulse compression by use of deformable mirrors. , 1999, Optics letters.

[10]  Takao Fuji,et al.  Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control. , 2002, Optics letters.

[11]  M. Schroeder Number Theory in Science and Communication , 1984 .

[12]  Warren S. Warren,et al.  Effects of arbitrary laser or NMR pulse shapes on population inversion and coherence , 1984 .

[13]  Y. Silberberg,et al.  Quantum control of the angular momentum distribution in multiphoton absorption processes. , 2004, Physical review letters.

[14]  J. Squier,et al.  Probing microscopic chemical environments with high-intensity chirped pulses. , 1999, Optics letters.

[15]  Broers,et al.  Diffraction and focusing of spectral energy in multiphoton processes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[16]  D. Goswami Optical pulse shaping approaches to coherent control , 2003 .

[17]  G. Wiederrecht,et al.  Femtosecond Pulse Sequences Used for Optical Manipulation of Molecular Motion , 1990, Science.

[18]  G. Gerber,et al.  Liquid-phase adaptive femtosecond quantum control: Removing intrinsic intensity dependencies , 2003 .

[19]  M. Murnane,et al.  Nonresonant control of multimode molecular wave packets at room temperature. , 2002, Physical review letters.

[20]  H Rabitz,et al.  Selective Bond Dissociation and Rearrangement with Optimally Tailored, Strong-Field Laser Pulses , 2001, Science.

[21]  M. Murnane,et al.  Adaptive pulse compression for transform-limited 15-fs high-energy pulse generation. , 2000, Optics letters.

[22]  Yaron Silberberg,et al.  Quantum control of coherent anti-Stokes Raman processes , 2002 .

[23]  Fumihiko Kannari,et al.  Evaluation of femtosecond pulse shaping with low-loss phase-only masks , 1998 .

[24]  Marcus Motzkus,et al.  Quantum control of energy flow in light harvesting , 2002, Nature.

[25]  T. Kobayashi,et al.  Adaptive shaping of two-cycle visible pulses using a flexible mirror , 2002 .

[26]  Y. Tsuchiya,et al.  Optimization of resonant two-photon absorption with adaptive quantum control , 2002 .

[27]  Yaron Silberberg,et al.  Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy , 2002, Nature.

[28]  Michael Schroeder Number theory in science and communication : With applications in cryptog-raphy , 1997 .

[29]  Thomas Weinacht,et al.  Using feedback for coherent control of quantum systems , 2002 .

[30]  D. Reitze,et al.  Programmable dispersion compensation and pulse shaping in a 26-fs chirped-pulse amplifier. , 1998, Optics letters.

[31]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[32]  Yaron Silberberg,et al.  Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses , 1999 .

[33]  W. Webb,et al.  Nonlinear magic: multiphoton microscopy in the biosciences , 2003, Nature Biotechnology.

[34]  H. Rabitz,et al.  Teaching lasers to control molecules. , 1992, Physical review letters.

[35]  Silberberg,et al.  Transform-Limited Pulses Are Not Optimal for Resonant Multiphoton Transitions. , 2001, Physical review letters.

[36]  Marcos Dantus,et al.  Use of coherent control methods through scattering biological tissue to achieve functional imaging. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Winfried Denk,et al.  Functional organization of sensory input to the olfactory bulb glomerulus analyzed by two-photon calcium imaging , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[38]  M. Dantus,et al.  Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses , 2003 .

[39]  U. Keller,et al.  Adaptive feedback control of ultrafast semiconductor nonlinearities , 2000 .

[40]  L. D. Noordam,et al.  Large interference effects of small chirp observed in two-photon absorption , 1992 .

[41]  M. Dantus,et al.  Multiphoton intrapulse interference 6; binary phase shaping. , 2004, Optics express.

[42]  D. Zeidler,et al.  Optimal control of one- and two-photon transitions with shaped femtosecond pulses and feedback , 2000 .

[43]  Martin M. Fejer,et al.  Sub-6-fs blue pulses generated by quasi-phase-matching second-harmonic generation pulse compression , 2002 .

[44]  T. Baumert,et al.  Femtosecond pulse shaping by an evolutionary algorithm with feedback , 1997 .

[45]  A. Weiner,et al.  Generation of terahertz-rate trains of femtosecond pulses by phase-only filtering. , 1990, Optics Letters.

[46]  M. S. Zubairy,et al.  FAST CARS: Engineering a laser spectroscopic technique for rapid identification of bacterial spores , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Yaron Silberberg,et al.  Narrow-band coherent anti-stokes Raman signals from broad-band pulses. , 2002, Physical review letters.

[48]  Yaron Silberberg,et al.  Coherent quantum control of two-photon transitions by a femtosecond laser pulse , 1998, Nature.

[49]  D. Wiersma,et al.  Amplitude and phase characterization of 4.5-fs pulses by frequency-resolved optical gating. , 1998, Optics letters.

[50]  Gustav Gerber,et al.  Controlling the Femtochemistry of Fe(CO)5 , 1999 .

[51]  Yaron Silberberg,et al.  Single-pulse phase-contrast nonlinear Raman spectroscopy. , 2002, Physical review letters.

[52]  Yaron Silberberg,et al.  Adaptive real-time femtosecond pulse shaping , 1998 .

[53]  Warren S. Warren,et al.  Implementation of a phase and amplitude modulated π pulse for coherent optical spectroscopy , 1987 .

[54]  H. Rabitz Shaped Laser Pulses as Reagents , 2003, Science.

[55]  Thomas Weinacht,et al.  Toward strong field mode-selective chemistry , 1999 .

[56]  Vladislav V. Yakovlev,et al.  Feedback quantum control of molecular electronic population transfer , 1997 .

[57]  Günter Steinmeyer,et al.  Techniques for the characterization of sub-10-fs optical pulses: a comparison , 2000 .

[58]  G. Roberts Interference effects in femtosecond spectroscopy , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[59]  Control of bond-selective photochemistry in CH BrCl using adaptive femtosecond pulse shaping , 2002 .

[60]  David H. Reitze,et al.  Pulse shaping with the Gerchberg–Saxton algorithm , 2002 .

[61]  A J Taylor,et al.  Adaptive control of femtosecond pulse propagation in optical fibers. , 2001, Optics letters.

[62]  I. Christov,et al.  Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays , 2000, Nature.

[63]  S. Mukamel Principles of Nonlinear Optical Spectroscopy , 1995 .

[64]  S. Mukamel,et al.  Ultrafast Nonlinear Spectroscopic Techniques in the Gas Phase and Their Density Matrix Representation , 2002 .

[65]  A. Weiner,et al.  Spectral phase correlation of coded femtosecond pulses by second-harmonic generation in thick nonlinear crystals. , 2000, Optics letters.

[66]  T. Hornung,et al.  Optimal control of molecular states in a learning loop with a parameterization in frequency and time domain , 2000 .

[67]  Andrew M. Weiner,et al.  Coherent control of second harmonic generation using spectrally phase coded femtosecond waveforms , 2001 .

[68]  Fumihiko Kannari,et al.  Feedback Control for Accurate Shaping of Ultrashort Optical Pulses prior to Chirped Pulse Amplification , 2004 .

[69]  M. Scully,et al.  Towards a FAST-CARS anthrax detector: CARS generation in a DPA surrogate molecule , 2003 .

[70]  L. González,et al.  Analysis and control of laser induced fragmentation processes in CpMn(CO)3 , 2001 .

[71]  Gerber,et al.  Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses , 1998, Science.

[72]  L. González,et al.  Deciphering the Reaction Dynamics Underlying Optimal Control Laser Fields , 2003, Science.

[73]  M. D. Moores,et al.  Minimization of dispersion in an ultrafast chirped pulse amplifier using adaptive learning , 2000 .

[74]  R. Miller,et al.  Versatile 7-fs optical parametric pulse generation and compression by use of adaptive optics. , 2001, Optics letters.

[75]  M.B. Pursley,et al.  Crosscorrelation properties of pseudorandom and related sequences , 1980, Proceedings of the IEEE.

[76]  A. Bandrauk,et al.  Laser Control and Manipulation of Molecules , 2002 .

[77]  Fumihiko Kannari,et al.  Adaptive pulse shaping of phase and amplitude of an amplified femtosecond pulse laser by direct reference to frequency-resolved optical gating traces , 2002 .

[78]  M. Dantus,et al.  Photon echo pulse sequences with femtosecond shaped laser pulses as a vehicle for molecule-based quantum computation , 2002 .

[79]  Adaptive control of pulse phase in a chirped-pulse amplifier. , 1998 .

[80]  Yaron Silberberg,et al.  Single-pulse coherent anti-Stokes Raman spectroscopy in the fingerprint spectral region , 2003 .

[81]  D. Zeidler,et al.  Adaptive compression of tunable pulses from a non-collinear-type OPA to below 16 fs by feedback-controlled pulse shaping , 2000 .

[82]  Y. Silberberg,et al.  Coherent transient enhancement of optically induced resonant transitions. , 2002, Physical review letters.

[83]  P. H. Bucksbaum,et al.  Coherent control using adaptive learning algorithms , 2001 .

[84]  W. Ryba-Romanowski,et al.  Spectroscopy of YVO4:Ho3+ crystals , 2002 .

[85]  20-fs pulse shaping with a 512-element phase-only liquid crystal modulator , 2001 .

[86]  N. Bloembergen Nonlinear Optics (4th Edition) , 1996 .

[87]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[88]  R. Skaug,et al.  Spread Spectrum in Communication , 1985 .

[89]  Yaron Silberberg,et al.  Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy. , 2003, Physical review letters.

[90]  Š. Vajda,et al.  Optimal control of multi-photon dissociation and ionization processes in small NamKn clusters , 2004 .

[91]  Marcos Dantus,et al.  Experimental coherent laser control of physicochemical processes. , 2004, Chemical reviews.

[92]  H. Rabitz,et al.  Closing the Loop on Bond Selective Chemistry Using Tailored Strong Field Laser Pulses , 2002 .

[93]  Warren S. Warren,et al.  The Usefulness of NMR Quantum Computing , 1997 .

[94]  H. Rabitz,et al.  Coherent learning control of vibrational motion in room temperature molecular gases , 2001 .

[95]  Marcos Dantus,et al.  Multiphoton Intrapulse Interference 8. Coherent control through scattering tissue. , 2004, Optics express.

[96]  G. Gerber,et al.  Photoselective adaptive femtosecond quantum control in the liquid phase , 2001, Nature.

[97]  Marcos Dantus,et al.  Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation. , 2004, Optics letters.

[98]  Andrius Baltuška,et al.  Second-harmonic generation frequency-resolved optical gating in the single-cycle regime , 1999 .

[99]  Andrew M. Weiner,et al.  Ultrafast two-photon absorption optical thresholding of spectrally coded pulses , 1999 .

[100]  J. Biegert,et al.  Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum. , 2003, Optics letters.

[101]  M. Dantus,et al.  Multiphoton Intrapulse Interference 3: Probing Microscopic Chemical Environments , 2004 .

[102]  G. Gerber,et al.  Quantum control of gas-phase and liquid-phase femtochemistry. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[103]  Marcos Dantus,et al.  Selective two-photon microscopy with shaped femtosecond pulses. , 2003, Optics express.

[104]  D Yelin,et al.  Adaptive femtosecond pulse compression. , 1997, Optics letters.

[105]  Dieter Beule,et al.  Evolutionary search for low autocorrelated binary sequences , 1998, IEEE Trans. Evol. Comput..

[106]  D. Zeidler,et al.  Optimal control of ground-state dynamics in polymers , 2002 .

[107]  Andrew M. Weiner,et al.  Shaping of wide bandwidth 20 femtosecond optical pulses , 1992 .

[108]  G. Gerber,et al.  Problem complexity in femtosecond quantum control , 2001 .

[109]  Marcos Dantus,et al.  Multiphoton Intrapulse Interference. 1. Control of Multiphoton Processes in Condensed Phases , 2002 .

[110]  M. Dantus,et al.  Multidimensional analytical method based on binary phase shaping of femtosecond pulses. , 2005, Journal of Physical Chemistry A.

[111]  S. Rice,et al.  Active control of product selection in a chemical reaction: a view of the current scene , 2002 .

[112]  M. Levenson The principles of nonlinear optics , 1985, IEEE Journal of Quantum Electronics.

[113]  U. Keller,et al.  Adaptive pulse compression by two-photon absorption in semiconductors. , 2002, Optics letters.

[114]  C. C. Wang,et al.  Nonlinear optics. , 1966, Applied optics.

[115]  Thomas Hornung,et al.  Coherent control of the molecular four-wave-mixing response by phase and amplitude shaped pulses , 2001 .

[116]  S. Nord,et al.  Temperature- and pressure-dependent absorption coefficients for CO2 and O2 at 193 nm , 2000 .

[117]  G. Wiederrecht,et al.  Femtosecond multiple-pulse impulsive stimulated Raman scattering spectroscopy , 1991 .

[118]  G. Gerber,et al.  Time-resolved organometallic photochemistry , 2002 .

[119]  O. Faucher,et al.  Controlling ground-state rotational dynamics of molecules by shaped femtosecond laser pulses , 2004 .

[120]  U. Keller,et al.  Real-time characterization and optimal phase control of tunable visible pulses with a flexible compressor , 2002 .