The effects of different nanoparticles on physical and thermal properties of water in a copper oscillating heat pipe via molecular dynamics simulation

[1]  Z. Said,et al.  Mechanical behavior and semiempirical force model of aerospace aluminum alloy milling using nano biological lubricant , 2023, Frontiers of Mechanical Engineering.

[2]  Z. Said,et al.  Nanofluids application in machining: a comprehensive review , 2023, The International Journal of Advanced Manufacturing Technology.

[3]  Z. Said,et al.  Machinability of ultrasonic vibration-assisted micro-grinding in biological bone using nanolubricant , 2023, Frontiers of Mechanical Engineering.

[4]  M. Ahmadi,et al.  Thermal Management of Solar Photovoltaic Cell by Using Single Walled Carbon Nanotube (SWCNT)/Water: Numerical Simulation and Sensitivity Analysis , 2022, Sustainability.

[5]  Ngakan Ketut Acwin Dwijendra,et al.  Carbonyl sulfide gas detection by pure, Zn- and Cd-decorated AlP nano-sheet , 2022, Monatshefte für Chemie - Chemical Monthly.

[6]  Zafar Hayat Khan,et al.  Numerical solution of micropolar fluid flow with heat transfer by finite difference method , 2022, International Journal of Modern Physics B.

[7]  J. Tu,et al.  Effects of variable magnetic field on particle fouling properties of magnetic nanofluids in a novel thermal exchanger system , 2022, International Journal of Thermal Sciences.

[8]  J. Tu,et al.  Experimental study on the influence of bionic channel structure and nanofluids on power generation characteristics of waste heat utilisation equipment , 2021, Applied Thermal Engineering.

[9]  J. Tu,et al.  Numerical simulation of flow and heat transfer characteristics of nanofluids in built-in porous twisted tape tube , 2021 .

[10]  J. Tu,et al.  Numerical analysis of flow and heat characteristic around micro-ribbed tube in heat exchanger system , 2021, Powder Technology.

[11]  H. Mohammadiun,et al.  The effect of variable temperature and location on relative thermal conductivity (RTC) on the heat pipe in the presence of AL2O3 nanoparticles: Numerical and optimization approaches , 2021, Journal of the Taiwan Institute of Chemical Engineers.

[12]  Muhammad Ibrahim,et al.  Evaluating the energy efficiency of a parabolic trough solar collector filled with a hybrid nanofluid by utilizing double fluid system and a novel corrugated absorber tube , 2021, Journal of the Taiwan Institute of Chemical Engineers.

[13]  T. Hayat,et al.  Numerical simulation of MHD hybrid nanofluid flow by a stretchable surface , 2021 .

[14]  Salman Ahmad,et al.  Time-dependent power-law nanofluid with entropy generation , 2020, Physica Scripta.

[15]  T. Hayat,et al.  Numerical analysis of entropy generation in viscous nanofluid stretched flow , 2020 .

[16]  Davood Toghraie,et al.  Investigation the nanofluid flow through a nanochannel to study the effect of nanoparticles on the condensation phenomena , 2020 .

[17]  D. Toghraie,et al.  The effects of suspending Copper nanoparticles into Argon base fluid inside a microchannel under boiling flow condition by using of molecular dynamic simulation , 2019, Journal of Molecular Liquids.

[18]  Naiqing Zhang,et al.  Experimental assessment of an environmentally friendly grinding process using nanofluid minimum quantity lubrication with cryogenic air , 2018 .

[19]  A. Rajabpour,et al.  Thermal conductivity and viscosity of nanofluids: A review of recent molecular dynamics studies , 2017 .

[20]  Yaogang Wang,et al.  Comparative evaluation of the lubricating properties of vegetable-oil-based nanofluids between frictional test and grinding experiment , 2017 .

[21]  Jian Qu,et al.  Design and experimental study on a hybrid flexible oscillating heat pipe , 2017 .

[22]  Dongzhou Jia,et al.  Experimental Evaluation of the Lubrication Performance of MoS2/CNT Nanofluid for Minimal Quantity Lubrication in Ni-based Alloy Grinding , 2015 .

[23]  Nikolaos Asproulis,et al.  Thermal conductivity of nanofluid in nanochannels , 2015 .

[24]  Takayoshi Inoue,et al.  Oscillating heat pipe simulation considering dryout phenomena , 2014 .

[25]  A. Sousa,et al.  Enhanced Thermal Conductivity and Viscosity of Nanodiamond-Nickel Nanocomposite Nanofluids , 2014, Scientific Reports.

[26]  S. Toxvaerd Ensemble simulations with discrete classical dynamics. , 2013, The Journal of chemical physics.

[27]  Robert A. Taylor,et al.  Small particles, big impacts: A review of the diverse applications of nanofluids , 2013 .

[28]  Niels Grønbech-Jensen,et al.  A simple and effective Verlet-type algorithm for simulating Langevin dynamics , 2012, 1212.1244.

[29]  W. Srimuang,et al.  A review of the applications of heat pipe heat exchangers for heat recovery , 2012 .

[30]  Seok-Ho Rhi,et al.  Thermal characteristics of grooved heat pipe with hybrid nanofluids , 2011 .

[31]  S. Kakaç,et al.  Review of convective heat transfer enhancement with nanofluids , 2009 .

[32]  Paisarn Naphon,et al.  Heat pipe efficiency enhancement with refrigerant–nanoparticles mixtures , 2009 .

[33]  Hongbin Ma,et al.  Nanofluid Effect on the Heat Transport Capability in a Well-Balanced Oscillating Heat Pipe , 2007 .

[34]  Xu Lei Thermal Analysis and Maximum Heat Transport of a Micro Flat Heat Pipe with Axial Triangle Grooves , 2007 .

[35]  Qingsong Yu,et al.  Effect of nanofluid on the heat transport capability in an oscillating heat pipe , 2006 .

[36]  J. Buongiorno Convective Transport in Nanofluids , 2006 .

[37]  K. Binder,et al.  Molecular dynamics simulations , 2003, cond-mat/0308148.

[38]  D. Poulikakos,et al.  REVIEW , 2003 .

[39]  Lanchao Lin,et al.  Experimental investigation of oscillating heat pipes , 2000, Collection of Technical Papers. 35th Intersociety Energy Conversion Engineering Conference and Exhibit (IECEC) (Cat. No.00CH37022).

[40]  Q. Spreiter,et al.  Classical Molecular Dynamics Simulation with the Velocity Verlet Algorithm at Strong External Magnetic Fields , 1999 .

[41]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[42]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[43]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[44]  J. H. R. Clarke,et al.  A comparison of constant energy, constant temperature and constant pressure ensembles in molecular dynamics simulations of atomic liquids , 1984 .

[45]  A. Bergles,et al.  Characteristics of Nucleate Pool Boiling From Porous Metallic Coatings , 1982 .

[46]  W. C. Swope,et al.  A computer simulation method for the calculation of equilibrium constants for the formation of physi , 1981 .

[47]  B. Alder,et al.  Phase Transition for a Hard Sphere System , 1957 .

[48]  Melville S. Green,et al.  Markoff Random Processes and the Statistical Mechanics of Time‐Dependent Phenomena. II. Irreversible Processes in Fluids , 1954 .

[49]  H. Chatley Cohesion , 1921, Nature.